Show simple item record

dc.contributor.authorMasdemont Soler, Josep
dc.contributor.authorGómez, Gerard
dc.contributor.authorAlessi, Elisa Maria
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I
dc.date.accessioned2010-05-28T10:41:32Z
dc.date.available2010-05-28T10:41:32Z
dc.date.created2010
dc.date.issued2010
dc.identifier.citationMasdemont, J.J.; Gómez, G.; Alessi, E. M. Two-manoeuvers transfers between LEOs and Lissajous orbits in the Earth-Moon system. "Advances in space research", 2010, vol. 45, p. 1276-1291.
dc.identifier.issn0273-1177
dc.identifier.urihttp://hdl.handle.net/2117/7405
dc.description.abstractThe purpose of this work is to compute transfer trajectories from a given Low Earth Orbit (LEO) to a nominal Lissajous quasi-periodic orbit either around the point L1 or the point L2 in the Earth–Moon system. This is achieved by adopting the Circular Restricted Three-Body Problem (CR3BP) as force model and applying the tools of Dynamical Systems Theory. It is known that the CR3BP admits five equilibrium points, also called Lagrangian points, and a first integral of motion, the Jacobi integral. In the neighbourhood of the equilibrium points L1 and L2, there exist periodic and quasi-periodic orbits and hyperbolic invariant manifolds which emanate from them. In this work, we focus on quasi-periodic Lissajous orbits and on the corresponding stable invariant manifolds. The transfers under study are established on two manoeuvres: the first one is required to leave the LEO, the second one to get either into the Lissajous orbit or into its associated stable manifold. We exploit order 25 Lindstedt–Poincare´ series expansions to compute invariant objects, classical manoeuvres and differential correction procedures to build the whole transfer. If part of the trajectory lays on the stable manifold, it turns out that the transfer’s total cost, Dvtot, and time, ttot, depend mainly on: 1. the altitude of the LEO; 2. the geometry of the arrival orbit; 3. the point of insertion into the stable manifold; 4. the angle between the velocity of insertion on the manifold and the velocity on it. As example, for LEOs 360 km high and Lissajous orbits of about 6000 km wide, we obtain Dvtot 2 ½3:68; 4:42 km=s and ttot 2 ½5; 40 days. As further finding, when the amplitude of the target orbit is large enough, there exist points for which it is more convenient to transfer from the LEO directly to the Lissajous orbit, that is, without inserting into its stable invariant manifold.
dc.format.extent16 p.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Aeronàutica i espai
dc.titleTwo-manoeuvers transfers between LEOs and Lissajous orbits in the Earth-Moon system
dc.typeArticle
dc.subject.lemacSatèl·lits artificials en navegació
dc.subject.lemacProblema dels tres cossos
dc.subject.lemacMecànica celest
dc.contributor.groupUniversitat Politècnica de Catalunya. EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions
dc.identifier.doi10.1016/j.asr.2009.12.010
dc.description.peerreviewedPeer Reviewed
dc.rights.accessRestricted access - publisher's policy
drac.iddocument2532278
dc.description.versionPostprint (published version)
upcommons.citation.authorMasdemont, J.J.; Gómez, G.; Alessi, E. M.
upcommons.citation.publishedtrue
upcommons.citation.publicationNameAdvances in space research
upcommons.citation.volume45
upcommons.citation.startingPage1276
upcommons.citation.endingPage1291


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, content on this work is licensed under a Creative Commons license: Attribution-NonCommercial-NoDerivs 3.0 Spain