3D reconstruction and quantification of porous structures
View/Open
3D reconstruction and quantification.pdf (1,602Mb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/7308
Document typeArticle
Defense date2008
Rights accessRestricted access - publisher's policy
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
In this paper, we describe the methodology that we have designed to quantify the pores distribution in bone implants and the empirical results that we have obtained with BioCAD designed scaffolds, microCT and confocal microscopy data. Our method is based on 3D digital topology properties of the porous structure. We segment the 3D images into three regions: exterior, bone and pore space. Next, we divide the pore space into pores and connection paths. We compute a graph of the pore space such that each node of the graph represents a pore, and an arc between two nodes indicates that the two pores are path-connected. On the basis of the graph and the segmented model, we are able to compute several properties of the material such as global porosity, effective porosity and radial pore distribution.
CitationVerges, E. [et al.]. 3D reconstruction and quantification of porous structures. "Computers and graphics (UK)", 2008, vol. 32, núm. 4, p. 438-444.
ISSN0097-8493
Files | Description | Size | Format | View |
---|---|---|---|---|
3D reconstruction and quantification.pdf![]() | 1,602Mb | Restricted access |