Show simple item record

dc.contributor.authorBerral García, Josep Lluís
dc.contributor.authorGoiri Presa, Íñigo
dc.contributor.authorNou Castell, Ramon
dc.contributor.authorJulià, Ferran
dc.contributor.authorGuitart Fernández, Jordi
dc.contributor.authorGavaldà Mestre, Ricard
dc.contributor.authorTorres Viñals, Jordi
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Llenguatges i Sistemes Informàtics
dc.identifier.citationBerral, J. [et al.]. Towards energy-aware scheduling in data centers using machine learning. A: . "1st International Conference on Energy-Efficient Computing and Networking". 2010, p. 215-224.
dc.description.abstractAs energy-related costs have become a major economical factor for IT infrastructures and data-centers, companies and the research community are being challenged to nd better and more efficient power-aware resource management strategies. There is a growing interest in "Green" IT and there is still a big gap in this area to be covered. In order to obtain an energy-efficient data center, we propose a framework that provides an intelligent consolidation methodology using di erent techniques such as turning on/o ff machines, power-aware consolidation algorithms, and machine learning techniques to deal with uncertain information while maximizing performance. For the machine learning approach, we use models learned from previous system behaviors in order to predict power consumption levels, CPU loads, and SLA timings, and improve scheduling decisions. Our framework is vertical, because it considers from watt consumption to workload features, and cross-disciplinary, as it uses a wide variety of techniques. We evaluate these techniques with a framework that covers the whole control cycle of a real scenario, using a simulation with representative heterogeneous workloads, and we measure the quality of the results according to a set of metrics focused toward our goals, besides traditional policies. The results obtained indicate that our approach is close to the optimal placement and behaves better when the level of uncertainty increases.
dc.format.extent10 p.
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.subjectÀrees temàtiques de la UPC::Informàtica::Intel·ligència artificial
dc.subject.lcshModeling -- Techniques
dc.subject.lcshKnowledge acquisition (Expert systems)
dc.titleTowards energy-aware scheduling in data centers using machine learning
dc.typeConference report
dc.subject.lemacConeixement -- Adquisició (Sistemes experts)
dc.subject.lemacModelatge -- Tècnica
dc.contributor.groupUniversitat Politècnica de Catalunya. CAP - Grup de Computació d'Altes Prestacions
dc.contributor.groupUniversitat Politècnica de Catalunya. LARCA - Laboratori d'Algorísmia Relacional, Complexitat i Aprenentatge
dc.description.peerreviewedPeer Reviewed
dc.rights.accessOpen Access
dc.description.versionPostprint (author’s final draft)
local.citation.authorBerral, J.; Goiri, I.; Nou, R.; Julià, F.; Guitart, J.; Gavaldà, R.; Torres, J.
local.citation.publicationName1st International Conference on Energy-Efficient Computing and Networking

Files in this item


This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain