The dissipative structure of variational multiscale methods for incompressible flows
View/Open
The dissipative structure of variational.pdf (1,202Mb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Document typeArticle
Defense date2010-02-01
Rights accessRestricted access - publisher's policy
Abstract
In this paper, we present a precise definition of the numerical dissipation for the orthogonal projection version of the variational multiscale method for incompressible flows. We show that, only if the space of subscales is taken orthogonal to the finite element space, this definition is physically reasonable as the coarse and fine scales are properly separated. Then we compare the diffusion introduced by the
numerical discretization of the problem with the diffusion introduced by a large eddy simulation model. Results for the flow around a surface-mounted obstacle problem show that numerical dissipation is of the
same order as the subgrid dissipation introduced by the Smagorinsky model. Finally, when transient subscales are considered, the model is able to predict backscatter, something that is only possible when dynamic LES closures are used. Numerical evidence supporting this point is also presented.
CitationPrincipe, R.; Codina, R.; Henke, F. The dissipative structure of variational multiscale methods for incompressible flows. "Computer methods in applied mechanics and engineering", 01 Febrer 2010, vol. 199, núm. 13-16, p. 791-801.
ISSN0045-7825
Files | Description | Size | Format | View |
---|---|---|---|---|
The dissipative structure of variational.pdf![]() | 1,202Mb | Restricted access |
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder