Beam-ACO based on stochastic sampling: a case study on the TSP with time windows
View/Open
Beam-ACO.pdf (245,7Kb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/7129
Document typeArticle
Defense date2009
Rights accessRestricted access - publisher's policy
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
Beam-ACO algorithms are hybrid methods that combine the metaheuristic ant colony optimization with beam search. They heavily rely on accurate and computationally inexpensive bounding information for choosing between different partial solutions during the solution construction process. In this work we present the use of stochastic sampling as a useful alternative to bounding information in cases were computing accurate bounding information is too expensive. As a case study we choose the well-known travelling salesman problem with time windows. Our results clearly demonstrate that Beam-ACO, even when bounding information is replaced by stochastic sampling, may have important advantages over standard ACO algorithms.
Description
Selected papers at Learning and Intelligent Optimization: Third International Conference, LION 3, Trento, Italy, January 14-18, 2009
CitationLópez, M.; Blum, C. Beam-ACO based on stochastic sampling: a case study on the TSP with time windows. "Lecture notes in computer science", 2009, vol. 5851, núm. -, p. 59-73.
ISSN0302-9743
Files | Description | Size | Format | View |
---|---|---|---|---|
Beam-ACO.pdf![]() | 245,7Kb | Restricted access |