Show simple item record

dc.contributor.authorIchishima, Rikio
dc.contributor.authorMuntaner Batle, Francesc Antoni
dc.contributor.authorRius Font, Miquel
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtica Aplicada IV
dc.description.abstractLet G = (V,E) be a graph of order p and size q. It is known that if G is super edge-magic graph then q 2p−3. Furthermore, if G is super edge-magic and q = 2p−3, then the girth of G is 3. It is also known that if the girth of G is at least 4 and G is super edge-magic then q 2p − 5. In this paper we show that there are infinitely many graphs which are super edge-magic, have girth 5, and q = 2p−5. Therefore the maximum size for super edge-magic graphs of girth 5 cannot be reduced with respect to the maximum size of super edge-magic graphs of girth 4.
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica discreta::Teoria de grafs
dc.subject.lcshGraph theory
dc.subject.lcshComputer science--Mathematics
dc.titleBounds on the size of super edge-magic graphs depending on the girth
dc.typeExternal research report
dc.subject.lemacGrafs, Teoria de
dc.contributor.groupUniversitat Politècnica de Catalunya. COMBGRAPH - Combinatòria, Teoria de Grafs i Aplicacions
dc.rights.accessOpen Access

Files in this item


This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain