Show simple item record

dc.contributor.authorDíaz Aguiló, Marc
dc.contributor.authorGarcía-Berro Montilla, Enrique
dc.contributor.authorLobo Gutiérrez, José Alberto
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Física Aplicada
dc.date.accessioned2010-04-19T11:30:17Z
dc.date.available2010-04-19T11:30:17Z
dc.date.created2010-01-12
dc.date.issued2010-01-12
dc.identifier.citationDiaz-Aguilo, M.; García-Berro, E.; Lobo, A. Theory and modelling of the magnetic field measurement in LISA PathFinder. "Classical and quantum gravity", 12 Gener 2010, vol. 27, p. 1-17.
dc.identifier.issn0264-9381
dc.identifier.urihttp://hdl.handle.net/2117/6974
dc.description.abstractThe magnetic diagnostics subsystem of the LISA Technology Package (LTP) on board the LISA PathFinder (LPF) spacecraft includes a set of four tri-axial fluxgate magnetometers, intended to measure with high precision the magnetic field at their respective positions. However, their readouts do not provide a direct measurement of the magnetic field at the positions of the test masses, and hence an interpolation method must be designed and implemented to obtain the values of the magnetic field at these positions. However, such an interpolation process faces serious difficulties. Indeed, the size of the interpolation region is excessive for a linear interpolation to be reliable while, on the other hand, the number of magnetometer channels do not provide sufficient data to go beyond the linear approximation. We describe an alternative method to address this issue, by means of neural network algorithms. The key point in this approach is the ability of neural networks to learn from suitable training data representing the behaviour of the magnetic field. Despite the relatively large distance between the test masses and the magnetometers, and the insufficient number of data channels, we find that our artificial neural network algorithm is able to reduce the estimation errors of the field and gradient down to levels below 10%, a quite satisfactory result. Learning efficiency can be best improved by making use of data obtained in on-ground measurements prior to mission launch in all relevant satellite locations and in real operation conditions. Reliable information on that appears to be essential for a meaningful assessment of magnetic noise in the LTP.
dc.format.extent18 p.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subject.lcshSpace vehicles
dc.subject.otherÀrees temàtiques de la UPC::Física::Astronomia i astrofísica
dc.titleTheory and modelling of the magnetic field measurement in LISA PathFinder
dc.typeArticle
dc.subject.lemacVehicles espacials
dc.contributor.groupUniversitat Politècnica de Catalunya. GAA - Grup d'Astronomia i Astrofísica
dc.identifier.doi10.1088/0264-9381/27/3/035005
dc.description.peerreviewedPeer Reviewed
dc.rights.accessRestricted access - publisher's policy
drac.iddocument2099755
dc.description.versionPostprint (published version)
upcommons.citation.authorDiaz-Aguilo, M.; García-Berro, E.; Lobo, A.
upcommons.citation.publishedtrue
upcommons.citation.publicationNameClassical and quantum gravity
upcommons.citation.volume27
upcommons.citation.startingPage1
upcommons.citation.endingPage17


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, content on this work is licensed under a Creative Commons license: Attribution-NonCommercial-NoDerivs 3.0 Spain