Amortized constant time state estimation in SLAM using a mixed Kalman-information filter
dc.contributor.author | Ila, Viorela Simona |
dc.contributor.author | Porta Pleite, Josep Maria |
dc.contributor.author | Andrade-Cetto, Juan |
dc.contributor.other | Institut de Robòtica i Informàtica Industrial |
dc.date.accessioned | 2010-02-15T18:43:10Z |
dc.date.available | 2010-02-15T18:43:10Z |
dc.date.created | 2009 |
dc.date.issued | 2009 |
dc.identifier.citation | Ila, V.; Porta, J.; Andrade-Cetto, J. Amortized constant time state estimation in SLAM using a mixed Kalman-information filter. A: European Conference on Mobile Robots. "European Conference on Mobile Robots (ECMR) 4th". Mlini: 2009, p. 211-216. |
dc.identifier.isbn | 978-953-6037-54-4 |
dc.identifier.uri | http://hdl.handle.net/2117/6376 |
dc.description.abstract | The computational bottleneck in all informationbased algorithms for SLAM is the recovery of the state mean and covariance. The mean is needed to evaluate model Jacobians and the covariance is needed to generate data association hypotheses. Recovering the state mean and covariance requires the inversion of a matrix of the size of the state. Current state recovery methods use sparse linear algebra tools that have quadratic cost, either in memory or in time. In this paper, we present an approach to state estimation that is worst case linear both in execution time and in memory footprint at loop closure, and constant otherwise. The approach relies on a state representation that combines the Kalman and the information-based state representations. The strategy is valid for any SLAM system that maintains constraints between robot poses at different time slices. This includes both Pose SLAM, the variant of SLAM where only the robot trajectory is estimated, and hierarchical techniques in which submaps are registered with a network of relative geometric constraints. |
dc.format.extent | 6 p. |
dc.language.iso | eng |
dc.subject | Àrees temàtiques de la UPC::Informàtica::Robòtica |
dc.subject.lcsh | Kalman filtering |
dc.title | Amortized constant time state estimation in SLAM using a mixed Kalman-information filter |
dc.type | Conference lecture |
dc.subject.lemac | Kalman, Filtratge de |
dc.contributor.group | Universitat Politècnica de Catalunya. VIS - Visió Artificial i Sistemes Intel·ligents |
dc.description.peerreviewed | Peer Reviewed |
dc.relation.publisherversion | http://www.ecmr09.fer.hr/ |
dc.rights.access | Open Access |
local.identifier.drac | 2473661 |
dc.description.version | Postprint (published version) |
local.citation.author | Ila, V.; Porta, J.; Andrade-Cetto, J. |
local.citation.contributor | European Conference on Mobile Robots |
local.citation.pubplace | Mlini |
local.citation.publicationName | European Conference on Mobile Robots (ECMR) 4th |
local.citation.startingPage | 211 |
local.citation.endingPage | 216 |
Files in this item
This item appears in the following Collection(s)
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder