Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
59.781 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Instituts de recerca
  • IRI - Institut de Robòtica i Informàtica Industrial, CSIC-UPC
  • Ponències/Comunicacions de congressos
  • View Item
  •   DSpace Home
  • E-prints
  • Instituts de recerca
  • IRI - Institut de Robòtica i Informàtica Industrial, CSIC-UPC
  • Ponències/Comunicacions de congressos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Amortized constant time state estimation in SLAM using a mixed Kalman-information filter

Thumbnail
View/Open
doc2.pdf (383,1Kb)
Share:
 
  View Usage Statistics
Cita com:
hdl:2117/6376

Show full item record
Ila, Viorela Simona
Porta Pleite, Josep MariaMés informacióMés informació
Andrade-Cetto, JuanMés informacióMés informacióMés informació
Document typeConference lecture
Defense date2009
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
The computational bottleneck in all informationbased algorithms for SLAM is the recovery of the state mean and covariance. The mean is needed to evaluate model Jacobians and the covariance is needed to generate data association hypotheses. Recovering the state mean and covariance requires the inversion of a matrix of the size of the state. Current state recovery methods use sparse linear algebra tools that have quadratic cost, either in memory or in time. In this paper, we present an approach to state estimation that is worst case linear both in execution time and in memory footprint at loop closure, and constant otherwise. The approach relies on a state representation that combines the Kalman and the information-based state representations. The strategy is valid for any SLAM system that maintains constraints between robot poses at different time slices. This includes both Pose SLAM, the variant of SLAM where only the robot trajectory is estimated, and hierarchical techniques in which submaps are registered with a network of relative geometric constraints.
CitationIla, V.; Porta, J.; Andrade-Cetto, J. Amortized constant time state estimation in SLAM using a mixed Kalman-information filter. A: European Conference on Mobile Robots. "European Conference on Mobile Robots (ECMR) 4th". Mlini: 2009, p. 211-216. 
URIhttp://hdl.handle.net/2117/6376
ISBN978-953-6037-54-4
Publisher versionhttp://www.ecmr09.fer.hr/
Collections
  • IRI - Institut de Robòtica i Informàtica Industrial, CSIC-UPC - Ponències/Comunicacions de congressos [463]
  • VIS - Visió Artificial i Sistemes Intel·ligents - Ponències/Comunicacions de congressos [286]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
doc2.pdf383,1KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina