Show simple item record

dc.contributor.authorBarbero Liñán, María
dc.contributor.authorEcheverría Enríquez, Arturo
dc.contributor.authorMartín de Diego, David
dc.contributor.authorMuñoz Lecanda, Miguel Carlos
dc.contributor.authorRomán Roy, Narciso
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtica Aplicada IV
dc.description.abstractIn 1983, the dynamics of a mechanical system was represented by a first-order system on a suitable phase space by R. Skinner and R. Rusk. The corresponding unified formalism developed for optimal control systems allows us to formulate geometrically the necessary conditions given by Pontryagin's Maximum Principle, as long as the differentiability with respect to controls is assumed.
dc.rightsAttribution-NonCommercial-NoDerivs 2.5 Spain
dc.subject.otherLagrangian and Hamiltonian formalisms
dc.subject.otherOptimal control
dc.titleSkinner-Rusk formalism for optimal control
dc.contributor.groupUniversitat Politècnica de Catalunya. DGDSA - Geometria Diferencial, Sistemes Dinàmics i Aplicacions
dc.subject.amsClassificació AMS::49 Calculus of variations and optimal control; optimization [See also 34H05, 34K35, 65Kxx, 90Cxx, 93-xx]::49J Existence theories
dc.subject.amsClassificació AMS::70 Mechanics of particles and systems {For relativistic mechanics, see 83A05 and 83C10; for statistical mechanics, see 82-xx}::70H Hamiltonian and Lagrangian mechanics [See also 37Jxx]
dc.subject.amsClassificació AMS::65 Numerical analysis::65L Ordinary differential equations
dc.rights.accessOpen Access

Files in this item


This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, content on this work is licensed under a Creative Commons license: Attribution-NonCommercial-NoDerivs 2.5 Spain