Show simple item record

dc.contributor.authorBadia, Santiago
dc.contributor.authorCodina, Ramon
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Resistència de Materials i Estructures a l'Enginyeria
dc.date.accessioned2009-11-18T13:31:35Z
dc.date.available2009-11-18T13:31:35Z
dc.date.issued2009-11-17
dc.identifier.urihttp://hdl.handle.net/2117/6064
dc.description.abstractA new mixed finite element approximation of Maxwell’s problem is proposed, its main features being that it is based on a novel augmented formulation of the continuous problem and the introduction of a mesh dependent stabilizing term, which yields a very weak control on the divergence of the unknown. The method is shown to be stable and convergent in the natural H (curl; Ω) norm for this unknown. In particular, convergence also applies to singular solutions, for which classical nodal based interpolations are known to suffer from spurious convergence upon mesh refinement.
dc.format.extent20 p.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi numèrica
dc.subjectÀrees temàtiques de la UPC::Física::Electromagnetisme
dc.subject.lcshNumerical methods and algorithms
dc.subject.lcshElectromagnetism
dc.subject.otherMaxwell's problem
dc.subject.otherSingular solutions
dc.subject.otherFinite elements
dc.subject.otherNodal interpolations
dc.subject.otherStabilization
dc.titleA nodal-based finite element approximation of the Maxwell problem suitable for singular solutions
dc.typeArticle
dc.subject.lemacCàlcul numèric
dc.subject.lemacElectromagnetisme
dc.contributor.groupUniversitat Politècnica de Catalunya. (MC)2 - Grup de Mecànica Computacional en Medis Continus
dc.rights.accessOpen Access
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/FP7/258443/EU/Computational Methods for Fusion Technology/COMFUS
local.personalitzacitaciotrue


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record