Show simple item record

dc.contributor.authorGiménez Pradales, José Miguel
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtica Aplicada III
dc.description.abstractThe semivalues are solution concepts for cooperative games that assign to each player a weighted sum of his/her marginal contributions to the coalitions, where the weights only depend on the coalition size. The Shapley value and the Banzhaf value are semivalues. The solutions introduced here are modifications of the semivalues when we consider a priori coalition blocks in the player set. A first semivalue is used among the coalition blocks and a second semivalue acts within each block. For all these solutions, we offer a computation procedure based on suitable modifications of the multilinear extension of the game and a product of matrices.
dc.rightsAttribution-NonCommercial-NoDerivs 2.5 Spain
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Investigació operativa::Teoria de jocs
dc.subject.lcshGame theory
dc.subject.otherCooperative Game
dc.subject.otherCoalition Structure
dc.subject.otherMultilinear Function
dc.titleCooperative games with a priori unions: introduction of a wide set of solutions
dc.typeExternal research report
dc.subject.lemacTeoria de jocs
dc.contributor.groupUniversitat Politècnica de Catalunya. GRTJ - Grup de Recerca en Teoria de Jocs
dc.subject.amsClassificació AMS::91 Game theory, economics, social and behavioral sciences::91A Game theory
dc.rights.accessOpen Access
dc.relation.projectidcttMTM 2006-06064 of the Education and Science Spanish Ministry and the European Regional Development Fund
dc.relation.projectidcttSGR 2005-00651 of the Catalonia Government (Generalitat de Catalunya)

Files in this item


This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, content on this work is licensed under a Creative Commons license: Attribution-NonCommercial-NoDerivs 2.5 Spain