Breast cancer molecular subtyping from H&E whole slide images using foundation models and transformers
View/Open
LJimenez_VVilaplana_Breath.pdf (7,046Mb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/428249
Document typePart of book or chapter of book
Defense date2024-10
Rights accessRestricted access - publisher's policy
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
ProjectINTELIGENCIA ARTIFICIAL INSESGADA Y EXPLICABLE PARA IMAGENES MEDICAS (AEI-PID2020-116907RB-I00)
Abstract
This study tackles the challenge of classifying breast cancer molecular subtypes using H&E-stained Whole Slide Images (WSI), avoiding the cost and labor limitations of the commonly used immunohistochemistry. We leverage the Attention-Challenging Multiple Instance Learning framework and introduce a variant, ACTrans, which utilizes a transformer aggregator for a more flexible feature aggregation. We also compare two publicly available foundation feature extractors pre-trained on large pathology datasets. A comparison of the impact of two different patch sizes at two different resolutions is made. The results obtained in our in-house dataset demonstrate that ACTrans yields superior results than existing methods, particularly with the UNI model at lower resolutions and larger patch sizes. In this setting, ACTrans achieves an average F1 score of 0.687, a precision of 0.755, a recall of 0.667, and an AUC of 0.812. Furthermore, these approaches enhance interpretability when displaying the attention weights. This method can potentially advance breast cancer diagnostics by leveraging the rich information within H&E-stained WSIs.
CitationJiménez, L.; Hernandez, C.; Vilaplana, V. Breast cancer molecular subtyping from H&E whole slide images using foundation models and transformers. A: "Artificial intelligence and imaging for diagnostic and treatment challenges in breast care". 2024, p. 159-168.
ISBN978-3-031-77789-9
Publisher versionhttps://link.springer.com/book/10.1007/978-3-031-77789-9
Files | Description | Size | Format | View |
---|---|---|---|---|
LJimenez_VVilaplana_Breath.pdf![]() | 7,046Mb | Restricted access |