Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
69.041 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Centres de recerca
  • BSC - Barcelona Supercomputing Center
  • Computer Sciences
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Centres de recerca
  • BSC - Barcelona Supercomputing Center
  • Computer Sciences
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Workload placement on heterogeneous CPU-GPU systems

Thumbnail
View/Open
3685800.3685845.pdf (488,2Kb)
 
10.14778/3685800.3685845
 
  View UPCommons Usage Statistics
  LA Referencia / Recolecta stats
Includes usage data since 2022
Cita com:
hdl:2117/426961

Show full item record
Nogueira Lobo de Carvalho, MarcosMés informacióMés informació
Simitsis, Alkis
Queralt Calafat, AnnaMés informacióMés informacióMés informació
Romero Moral, ÓscarMés informacióMés informacióMés informació
Document typeArticle
Defense date2024-08
PublisherAssociation for Computing Machinery (ACM)
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 4.0 International
This work is protected by the corresponding intellectual and industrial property rights. Except where otherwise noted, its contents are licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 4.0 International
ProjectDEDS - Data Engineering for Data Science (EC-H2020-955895)
DESARROLLO, OPERATIVA Y GOBERNANZA DE DATOS PARA SISTEMAS SOFTWARE BASADOS EN APRENDIZAJE AUTOMATICO (AEI-PID2020-117191RB-I00)
Abstract
The popularity of heterogeneous CPU-GPU processing has increased considerably in recent years. To efficiently utilize heterogeneous resources, data processing systems depend on an appropriate workload placement strategy to assign the right amount of compute to the right processor. However, finding an optimal placement strategy is not trivial due to various complex and conflicting tradeoffs related to the characteristics of processors, the nature of the workload, and data locality. In addition, placement decisions impact workload runtime and performance cost, and also depend on the availability of potentially different implementations for CPUs and GPUs, which adds extra complexity in such heterogeneous environments. In this tutorial, we review and compare state-of-the-art strategies for workload placement on heterogeneous CPU-GPU architectures, along with runtime prediction techniques and methods to support multi-device code. We also discuss open issues and identify potentially promising future research directions.
CitationNogueira, M. [et al.]. Workload placement on heterogeneous CPU-GPU systems. "Proceedings of the VLDB Endowment", Agost 2024, vol. 17, núm. 12, p. 4241-4244. 
URIhttp://hdl.handle.net/2117/426961
DOI10.14778/3685800.3685845
ISSN2150-8097
Publisher versionhttps://dl.acm.org/doi/10.14778/3685800.3685845
Collections
  • Computer Sciences - Articles de revista [361]
  • Doctorat en Computació - Articles de revista [54]
  • Departament d'Enginyeria de Serveis i Sistemes d'Informació - Articles de revista [246]
  View UPCommons Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
3685800.3685845.pdf488,2KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Metadata under:Metadata under CC0
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina