Pressure boundary conditions for immersed-boundary methods
View/Open
Main article (2,897Mb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/426412
Document typeArticle
Defense date2024-08
Rights accessRestricted access - publisher's policy
(embargoed until 2026-08-13)
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
Immersed boundary methods have seen an enormous increase in popularity over the past two decades, especially for problems involving complex moving/deforming boundaries. In most cases, the boundary conditions on the immersed body are enforced via forcing functions in the momentum equations, which in the case of fractional step methods may be problematic due to: i) creation of slip-errors resulting from the lack of explicitly enforcing boundary conditions on the (pseudo-)pressure on the immersed body; ii) coupling of the solution in the fluid and solid domains via the Poisson equation. Examples of fractional-step formulations that simultaneously enforce velocity and pressure boundary conditions have also been developed, but in most cases the standard Poisson equation is replaced by a more complex system which requires expensive iterative solvers. In this work we propose a new formulation to enforce appropriate boundary conditions on the pseudo-pressure as part of a fractional-step approach. The overall treatment is inspired by the ghost-fluid method typically utilized in two-phase flows. The main advantage of the algorithm is that a standard Poisson equation is solved, with all the modifications needed to enforce the boundary conditions being incorporated within the right-hand side. As a result, fast solvers based on trigonometric transformations can be utilized. We demonstrate the accuracy and robustness of the formulation for a series of problems with increasing complexity.
CitationYildiran, I. [et al.]. Pressure boundary conditions for immersed-boundary methods. "Journal of computational physics", Agost 2024, vol. 510, núm. article 113057.
ISSN0021-9991
Files | Description | Size | Format | View |
---|---|---|---|---|
Pressure_bounda ... ersed_boundary_methods.pdf![]() | Main article | 2,897Mb | Restricted access |