dc.contributor.author | Rivera Torres, Pedro Juan |
dc.contributor.author | Chen, Chen |
dc.contributor.author | Macías Aguayo, Jaime |
dc.contributor.author | Rodríguez González, Sara |
dc.contributor.author | Prieto Tejedor, Javier |
dc.contributor.author | Llanes Santiago, Orestes |
dc.contributor.author | Gershenson García, Carlos |
dc.contributor.author | Kanaan Izquierdo, Samir |
dc.contributor.other | Universitat Politècnica de Catalunya. Doctorat en Enginyeria Biomèdica |
dc.date.accessioned | 2025-02-12T07:51:00Z |
dc.date.available | 2025-02-12T07:51:00Z |
dc.date.issued | 2024-12-01 |
dc.identifier.citation | Rivera, P. [et al.]. A learning probabilistic boolean network model of a smart grid with applications in system maintenance. "Energies", 1 Desembre 2024, vol. 17, núm. 24, article 6399. |
dc.identifier.issn | 1996-1073 |
dc.identifier.uri | http://hdl.handle.net/2117/423964 |
dc.description.abstract | Probabilistic Boolean Networks can capture the dynamics of complex biological systems as well as other non-biological systems, such as manufacturing systems and smart grids. In this proof-of-concept manuscript, we propose a Probabilistic Boolean Network architecture with a learning process that significantly improves the prediction of the occurrence of faults and failures in smart-grid systems. This idea was tested in a Probabilistic Boolean Network model of the WSCC nine-bus system that incorporates Intelligent Power Routers on every bus. The model learned the equality and negation functions in the different experiments performed. We take advantage of the complex properties of Probabilistic Boolean Networks to use them as a positive feedback adaptive learning tool and to illustrate that these networks could have a more general use than previously thought. This multi-layered PBN architecture provides a significant improvement in terms of performance for fault detection, within a positive-feedback network structure that is more tolerant of noise than other techniques. |
dc.description.sponsorship | This project has received funding from the European Union’s Horizon 2020 research and innovation program under the Maria Skłodowska-Curie grant agreement No. 101034371. |
dc.language.iso | eng |
dc.rights | Attribution 4.0 International |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ |
dc.subject | Àrees temàtiques de la UPC::Energies |
dc.subject | Àrees temàtiques de la UPC::Informàtica::Automàtica i control |
dc.subject.other | Fault detection and isolation |
dc.subject.other | Machine learning algorithms |
dc.subject.other | Probabilistic Boolean networks |
dc.subject.other | Probabilistic Boolean network modeling |
dc.subject.other | Smart grids |
dc.subject.other | Complex network modeling |
dc.title | A learning probabilistic boolean network model of a smart grid with applications in system maintenance |
dc.type | Article |
dc.identifier.doi | 10.3390/en17246399 |
dc.description.peerreviewed | Peer Reviewed |
dc.relation.publisherversion | https://www.mdpi.com/1996-1073/17/24/6399 |
dc.rights.access | Open Access |
local.identifier.drac | 40425427 |
dc.description.version | Postprint (published version) |
local.citation.author | Rivera, P.; Chen, C.; Macías, J.; Rodríguez, S.; Prieto, J.; Llanes, O.; Gershenson, C.; Kanaan Izquierdo, S. |
local.citation.publicationName | Energies |
local.citation.volume | 17 |
local.citation.number | 24, article 6399 |