Show simple item record

dc.contributor.authorRivera Torres, Pedro Juan
dc.contributor.authorChen, Chen
dc.contributor.authorMacías Aguayo, Jaime
dc.contributor.authorRodríguez González, Sara
dc.contributor.authorPrieto Tejedor, Javier
dc.contributor.authorLlanes Santiago, Orestes
dc.contributor.authorGershenson García, Carlos
dc.contributor.authorKanaan Izquierdo, Samir
dc.contributor.otherUniversitat Politècnica de Catalunya. Doctorat en Enginyeria Biomèdica
dc.date.accessioned2025-02-12T07:51:00Z
dc.date.available2025-02-12T07:51:00Z
dc.date.issued2024-12-01
dc.identifier.citationRivera, P. [et al.]. A learning probabilistic boolean network model of a smart grid with applications in system maintenance. "Energies", 1 Desembre 2024, vol. 17, núm. 24, article 6399.
dc.identifier.issn1996-1073
dc.identifier.urihttp://hdl.handle.net/2117/423964
dc.description.abstractProbabilistic Boolean Networks can capture the dynamics of complex biological systems as well as other non-biological systems, such as manufacturing systems and smart grids. In this proof-of-concept manuscript, we propose a Probabilistic Boolean Network architecture with a learning process that significantly improves the prediction of the occurrence of faults and failures in smart-grid systems. This idea was tested in a Probabilistic Boolean Network model of the WSCC nine-bus system that incorporates Intelligent Power Routers on every bus. The model learned the equality and negation functions in the different experiments performed. We take advantage of the complex properties of Probabilistic Boolean Networks to use them as a positive feedback adaptive learning tool and to illustrate that these networks could have a more general use than previously thought. This multi-layered PBN architecture provides a significant improvement in terms of performance for fault detection, within a positive-feedback network structure that is more tolerant of noise than other techniques.
dc.description.sponsorshipThis project has received funding from the European Union’s Horizon 2020 research and innovation program under the Maria Skłodowska-Curie grant agreement No. 101034371.
dc.language.isoeng
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectÀrees temàtiques de la UPC::Energies
dc.subjectÀrees temàtiques de la UPC::Informàtica::Automàtica i control
dc.subject.otherFault detection and isolation
dc.subject.otherMachine learning algorithms
dc.subject.otherProbabilistic Boolean networks
dc.subject.otherProbabilistic Boolean network modeling
dc.subject.otherSmart grids
dc.subject.otherComplex network modeling
dc.titleA learning probabilistic boolean network model of a smart grid with applications in system maintenance
dc.typeArticle
dc.identifier.doi10.3390/en17246399
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://www.mdpi.com/1996-1073/17/24/6399
dc.rights.accessOpen Access
local.identifier.drac40425427
dc.description.versionPostprint (published version)
local.citation.authorRivera, P.; Chen, C.; Macías, J.; Rodríguez, S.; Prieto, J.; Llanes, O.; Gershenson, C.; Kanaan Izquierdo, S.
local.citation.publicationNameEnergies
local.citation.volume17
local.citation.number24, article 6399


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record