Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
69.362 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Altres
  • Enviament des de DRAC
  • View Item
  •   DSpace Home
  • E-prints
  • Altres
  • Enviament des de DRAC
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Early prediction of battery remaining useful life using CNN-XGBoost model and Coati optimization algorithm

Thumbnail
View/Open
1-s2.0-S2352152X24027622-main.pdf (1,724Mb)
 
10.1016/j.est.2024.113176
 
  View UPCommons Usage Statistics
  LA Referencia / Recolecta stats
Includes usage data since 2022
Cita com:
hdl:2117/423571

Show full item record
Safavi, Vahid
Vaniar, Arash Mohammadi
Bazmohammadi, Najmeh
Vasquez, Juan Carlos
Keysan, Ozan
Guerrero Zapata, Josep MariaMés informacióMés informació
Document typeArticle
Defense date2024-09-20
PublisherElsevier
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 4.0 International
This work is protected by the corresponding intellectual and industrial property rights. Except where otherwise noted, its contents are licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 4.0 International
Abstract
Lithium-ion (Li-ion) batteries are essential for modern power systems but suffer from performance degradation over time. Accurate prediction of the remaining useful life (RUL) of these batteries is critical for ensuring the reliability and efficient operation of the power grid. On this basis, this paper presents a novel Coati-integrated Convolutional Neural Network (CNN)-XGBoost approach for the early RUL prediction of Li-ion batteries. This method incorporates CNN architecture to automatically extract features from the discharge capacity data of the battery via image processing techniques. The extracted features from the CNN model are concatenated with another set of features extracted from the first 100 cycles of measured battery data based on the charging policy information of the battery. This combined set of features is then fed into an XGBoost model to make the early RUL prediction. Additionally, the Coati Optimization Method (COM) is utilized for CNN hyperparameter tuning, to improve the performance of the proposed RUL prediction method. Numerical results reveal the effectiveness of the proposed approach in predicting the RUL of Li-ion batteries, where values of 106 cycles and 7.5% have been obtained for the RMSE and MAPE, respectively.
CitationSafavi, V. [et al.]. Early prediction of battery remaining useful life using CNN-XGBoost model and Coati optimization algorithm. "Journal of energy storage", 20 Setembre 2024, vol. 98, núm. Part B, article 113176. 
URIhttp://hdl.handle.net/2117/423571
DOI10.1016/j.est.2024.113176
ISSN2352-152X
Publisher versionhttps://www.sciencedirect.com/science/article/pii/S2352152X24027622
Collections
      View UPCommons Usage Statistics

    Show full item record

    FilesDescriptionSizeFormatView
    1-s2.0-S2352152X24027622-main.pdf1,724MbPDFView/Open

    Browse

    This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

    © UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

    info.biblioteques@upc.edu

    • About This Repository
    • Metadata under:Metadata under CC0
    • Contact Us
    • Send Feedback
    • Privacy Settings
    • Inici de la pàgina