UPCommons està en procés de migració del dia 10 fins al 14 Juliol. L’autentificació està deshabilitada per evitar canvis durant aquesta migració.
A novel rule-based oversampling approach for imbalanced data classification
View/Open
A_novel_rule_Based_Oversampling_Approach_for_Imbalanced_Data_Classification__ESM.pdf (3,591Mb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/423473
Document typeConference lecture
Defense date2023
PublisherEUROSIS-ETI
Rights accessRestricted access - publisher's policy
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
When confronted with imbalanced datasets, traditional classifiers frequently struggle to correctly categorize samples from the minority class, adversely impacting the overall predictive performance of machine learning models. Current oversampling techniques generally focus on data interpolation through neighbor selection, often neglecting to uncover underlying data structures and relationships. This study introduces a novel application for RuLer, an algorithm originally developed for identifying sound patterns in the artistic domain of live coding. When adapted for data oversampling (as Ad-RuLer), the algorithm shows significant promise in addressing the challenges associated with imbalanced class distribution. We undertake a thorough comparative evaluation of Ad-RuLer against established oversampling algorithms such as SMOTE, ADASYN, Tomek-links, Borderline-SMOTE, and KmeansSMOTE. The evaluation employs various classifiers including logistic regression, random forest, and XGBoost, and is conducted over six real-world biomedical datasets with varying degrees of imbalance.
CitationZhang, X.; Paz, A.; Nebot, A. A novel rule-based oversampling approach for imbalanced data classification. A: European Simulation and Modelling Conference. "The 37th Annual European Simulation and Modelling Conference 2023: Toulouse, France, October 24-26, 2023". Ostend: EUROSIS-ETI, 2023, p. 208-212. ISBN 978-9-492-859-28-0.
ISBN978-9-492-859-28-0
Collections
Files | Description | Size | Format | View |
---|---|---|---|---|
A_novel_rule_Ba ... ta_Classification__ESM.pdf![]() | 3,591Mb | Restricted access |