Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
75.830 UPC academic works
You are here:
View Item 
  •   DSpace Home
  • Treballs acadèmics
  • Màsters oficials
  • Master's degree in Advanced Telecommunication Technologies (MATT)
  • View Item
  •   DSpace Home
  • Treballs acadèmics
  • Màsters oficials
  • Master's degree in Advanced Telecommunication Technologies (MATT)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

3D semantic scene completion with LiDAR point clouds

Thumbnail
View/Open
TFM.pdf (7,025Mb)
  View UPCommons Usage Statistics
  LA Referencia / Recolecta stats
Includes usage data since 2022
Cita com:
hdl:2117/423092

Show full item record
Cortada Garcia, Martí
Tutor / directorCasas Pla, Josep RamonMés informacióMés informacióMés informació; Ruiz Hidalgo, JavierMés informacióMés informacióMés informació
Document typeMaster thesis
Date2024-07-10
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
In recent years, the development of autonomous vehicles has shown significant potential in improving road safety by reducing traffic accidents and fatalities. One of the critical technologies enabling this advancement is LiDAR (Light Detection and Ranging), which provides precise geometric information about the environment. This master's thesis fo- cuses on 3D Semantic Scene Completion using LiDAR point clouds, a technique that aims to predict complete 3D voxel representations of scenes from incomplete LiDAR data. This task involves determining whether each voxel is occupied and assigning it a semantic label. The study reviews state-of-the-art methods for semantic scene completion, including SSA- SC, JS3C-Net, and SCPNet, which have demonstrated high performance in benchmarks like SemanticKITTI. The chosen method, SCPNet, utilizes a teacher-student framework to distill dense semantic knowledge from multi-frame point clouds (teacher) to single-frame point clouds (student). The implementation involves significant memory management and architectural optimizations to handle large datasets and computational limitations effectively. Experiments were conducted using the SemanticKITTI dataset, and the results were evaluated using mean Intersection over Union (mIoU) metrics. The thesis also explores the fusion of semantic scene completion with object detection tasks, using the nuScenes dataset to assess generalization. The findings indicate that while SCPNet shows superior performance in certain dynamic object classes, challenges remain in accurately detecting and representing moving objects like pedestrians and cyclists. Future research directions include further optimizing memory usage and improving the integration of semantic scene completion with other perception tasks.
SubjectsMachine learning, Computer vision, Pattern recognition systems, Remote sensing, Aprenentatge automàtic, Visió per ordinador, Reconeixement de formes (Informàtica), Teledetecció
DegreeMÀSTER UNIVERSITARI EN TECNOLOGIES AVANÇADES DE TELECOMUNICACIÓ (Pla 2019)
URIhttp://hdl.handle.net/2117/423092
Collections
  • Màsters oficials - Master's degree in Advanced Telecommunication Technologies (MATT) [196]
  View UPCommons Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
TFM.pdf7,025MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Metadata under:Metadata under CC0
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina