Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
68.786 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • CERTEC - Centre d'Estudis del Risc Tecnològic
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • CERTEC - Centre d'Estudis del Risc Tecnològic
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Comparison of machine learning models for prediction of safety distances in toxic dispersion scenarios

Thumbnail
View/Open
032.pdf (1,088Mb)
 
10.3303/CET24111032
 
  View UPCommons Usage Statistics
  LA Referencia / Recolecta stats
Includes usage data since 2022
Cita com:
hdl:2117/419709

Show full item record
Papadaki, ArtemisMés informacióMés informació
Belda Ley, MercedesMés informacióMés informació
Bramato, Stefania
Agueda Costafreda, AlbaMés informacióMés informacióMés informació
Planas Cuchi, EulàliaMés informacióMés informacióMés informació
Document typeArticle
Defense date2024-01-01
PublisherAssociazione Italiana di Ingegneria Chimica (AIDIC)
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
In the recent years, Machine Learning (ML) has demonstrated a significant potential in handling big amounts of diverse data and generating rapid and accurate predictions. These capabilities, applied in risk analysis studies, can be particularly valuable in emergency planning of industrial sites, providing timely and reasonably accurate information during and after accidents. This work focuses on the determination of safety distances, which are an indispensable part of the risk assessment of Seveso establishments. Specifically, ML models are implemented to predict safety distances in toxic dispersion scenarios of three substances, namely ammonia, chlorine and ethylene oxide. For the purpose of training the models, a database is constructed using ALOHA software, containing different scenarios over a wide range of atmospheric and process conditions that influence the release and the dispersion phenomena. Four distinct supervised ML models are deployed to perform classification and regression tasks, predicting distances for the intervention zone. The models are tuned and evaluated based on common statistical metrics, as well as a case-specific metric. The results indicate that classification is achieved in all the cases with similar degree of agreement, while regression varies significantly among the models.
CitationPapadaki, A. [et al.]. Comparison of machine learning models for prediction of safety distances in toxic dispersion scenarios. "Chemical engineering transactions", 1 Gener 2024, vol. 111, p. 187-192. 
URIhttp://hdl.handle.net/2117/419709
DOI10.3303/CET24111032
ISSN2283-9216
Publisher versionhttps://www.cetjournal.it/cet/24/111/032.pdf
Collections
  • CERTEC - Centre d'Estudis del Risc Tecnològic - Articles de revista [137]
  • Doctorat en Enginyeria de Processos Químics - Articles de revista [141]
  • Departament d'Enginyeria Química - Articles de revista [2.435]
  View UPCommons Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
032.pdf1,088MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Metadata under:Metadata under CC0
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina