Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
69.343 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Programes de doctorat
  • Doctorat en Intel·ligència Artificial
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Programes de doctorat
  • Doctorat en Intel·ligència Artificial
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deformable surface reconstruction via Riemannian metric preservation

Thumbnail
View/Open
1-s2.0-S1077314224002364-main.pdf (3,696Mb)
 
10.1016/j.cviu.2024.104155
 
  View UPCommons Usage Statistics
  LA Referencia / Recolecta stats
Includes usage data since 2022
Cita com:
hdl:2117/416842

Show full item record
Barbany Mayor, OriolMés informacióMés informació
Colomé Figueras, AdriàMés informacióMés informació
Torras, CarmeMés informacióMés informacióMés informació
Document typeArticle
Defense date2024-09
Rights accessOpen Access
Attribution 4.0 International
This work is protected by the corresponding intellectual and industrial property rights. Except where otherwise noted, its contents are licensed under a Creative Commons license : Attribution 4.0 International
ProjectCLOTHILDE - CLOTH manIpulation Learning from DEmonstrations (EC-H2020-741930)
Abstract
Estimating the pose of an object from a monocular image is a fundamental inverse problem in computer vision. Due to its ill-posed nature, solving this problem requires incorporating deformation priors. In practice, many materials do not perceptibly shrink or extend when manipulated, constituting a reliable and well-known prior. Mathematically, this translates to the preservation of the Riemannian metric. Neural networks offer the perfect playground to solve the surface reconstruction problem as they can approximate surfaces with arbitrary precision and allow the computation of differential geometry quantities. This paper presents an approach for inferring continuous deformable surfaces from a sequence of images, which is benchmarked against several techniques and achieves state-of-the-art performance without the need for offline training. Being a method that performs per-frame optimization, our method can refine its estimates, contrary to those based on performing a single inference step. Despite enforcing differential geometry constraints at each update, our approach is the fastest of all the tested optimization-based methods.
CitationBarbany, O.; Colome, A.; Torras, C. Deformable surface reconstruction via Riemannian metric preservation. "Computer vision and image understanding", Setembre 2024, vol. 249, article 104155. 
URIhttp://hdl.handle.net/2117/416842
DOI10.1016/j.cviu.2024.104155
ISSN1077-3142
Publisher versionhttps://www.sciencedirect.com/science/article/pii/S1077314224002364
Collections
  • Doctorat en Intel·ligència Artificial - Articles de revista [64]
  • ROBiri - Grup de Percepció i Manipulació Robotitzada de l'IRI - Articles de revista [178]
  • IRI - Institut de Robòtica i Informàtica Industrial, CSIC-UPC - Articles de revista [402]
  View UPCommons Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
1-s2.0-S1077314224002364-main.pdf3,696MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Metadata under:Metadata under CC0
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina