Show simple item record

dc.contributor.authorMohammadpoor Faskhodi, Mahtab
dc.contributor.authorFernández Chimeno, Mireya
dc.contributor.authorGarcía González, Miguel Ángel
dc.contributor.otherUniversitat Politècnica de Catalunya. Doctorat en Enginyeria Biomèdica
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Electrònica
dc.date.accessioned2024-10-29T11:48:18Z
dc.date.available2024-10-29T11:48:18Z
dc.date.issued2024-07-05
dc.identifier.citationMohammadpoorfaskhodi, M.; Fernandez, M.; Garcia, M. Using ultra-short-term Heart Rate Variability (HRV) analysis to track posture changes. "IEEE access", 5 Juliol 2024, vol. 12, p. 129994-130006.
dc.identifier.issn2169-3536
dc.identifier.urihttp://hdl.handle.net/2117/416707
dc.description.abstractBody posture significantly influences heart rate variability (HRV) through the autonomic nervous system (ANS), which maintains hemodynamic stability by balancing sympathetic and parasympathetic activity. Postural changes affect blood distribution, consequently altering HRV. Previous studies indicated that a supine posture decreases sympathetic and increases parasympathetic activity while standing increases sympathetic and decreases parasympathetic activity. Sitting involves both systems’ activities. Recently, ultra-short-term HRV analysis has been used to track physiological changes for its practicality and real-time monitoring capabilities. This study recorded electrocardiogram (ECG) signals from 30 healthy adults in supine, sitting, and standing postures to monitor postural changes. After random extraction of the RR time series for each posture, 16 HRV metrics were calculated. Based on statistical analysis, the HRV metrics that showed the most significant changes in tracking posture were the mean RR, min RR, max RR, RMSDD, SD1, SD1/SD2, DFA a1 , and alpha ( a ). Nevertheless, several HRV indices were inconsistent, indicating that these values depended on the length of the recording time window. In addition, classification performance deteriorated if it was not specifically tailored or calibrated for each participant. The findings of this study reveal that mean RR, RMSDD, and SD1 provided the best posture classification performance using the ultra-short-term HRV analysis. Among these indices, the most sensitive index was RMSDD, showing an 82% change when comparing lying to standing postures. The consistency of these HRV indices across different time windows suggests that these indices are largely independent of the time window and exhibit changes within the same range as those reported in previous studies.
dc.description.sponsorshipThis work was supported by Spanish Ministerio de Ciencia e Innovación under Project PID2019-107473RB-C2.
dc.format.extent13 p.
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectÀrees temàtiques de la UPC::Enginyeria electrònica::Microelectrònica
dc.subject.otherPosture changes
dc.subject.otherHeart Rate Variability (HRV)
dc.subject.otherUltra-short-term
dc.subject.otherAnalysis
dc.titleUsing ultra-short-term Heart Rate Variability (HRV) analysis to track posture changes
dc.typeArticle
dc.contributor.groupUniversitat Politècnica de Catalunya. IEB - Instrumentació Electrònica i Biomèdica
dc.identifier.doi10.1109/ACCESS.2024.3424245
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://ieeexplore.ieee.org/document/10587001
dc.rights.accessOpen Access
local.identifier.drac39545993
dc.description.versionPostprint (published version)
dc.relation.projectidinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107473RB-C22/ES/METODOS NO INTRUSIVOS PARA MONITORIZAR EL PROCESO DE ESFUERZO%2FRECUPERACION BASADOS EN EL ANALISIS DE LA CALIDAD DEL SUEÑO Y LA ESTIMACION DEL BALANCE DE CARGA INTERNA%2FEXTERNA/
local.citation.authorMohammadpoorfaskhodi, M.; Fernandez, M.; Garcia, M.
local.citation.publicationNameIEEE access
local.citation.volume12
local.citation.startingPage129994
local.citation.endingPage130006


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record