dc.contributor.author | Mohammadpoor Faskhodi, Mahtab |
dc.contributor.author | Fernández Chimeno, Mireya |
dc.contributor.author | García González, Miguel Ángel |
dc.contributor.other | Universitat Politècnica de Catalunya. Doctorat en Enginyeria Biomèdica |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament d'Enginyeria Electrònica |
dc.date.accessioned | 2024-10-29T11:48:18Z |
dc.date.available | 2024-10-29T11:48:18Z |
dc.date.issued | 2024-07-05 |
dc.identifier.citation | Mohammadpoorfaskhodi, M.; Fernandez, M.; Garcia, M. Using ultra-short-term Heart Rate Variability (HRV) analysis to track posture changes. "IEEE access", 5 Juliol 2024, vol. 12, p. 129994-130006. |
dc.identifier.issn | 2169-3536 |
dc.identifier.uri | http://hdl.handle.net/2117/416707 |
dc.description.abstract | Body posture significantly influences heart rate variability (HRV) through the autonomic nervous system (ANS), which maintains hemodynamic stability by balancing sympathetic and parasympathetic activity. Postural changes affect blood distribution, consequently altering HRV. Previous studies indicated that a supine posture decreases sympathetic and increases parasympathetic activity while standing increases sympathetic and decreases parasympathetic activity. Sitting involves both systems’ activities. Recently, ultra-short-term HRV analysis has been used to track physiological changes for its practicality and real-time monitoring capabilities. This study recorded electrocardiogram (ECG) signals from 30 healthy adults in supine, sitting, and standing postures to monitor postural changes. After random extraction of the RR time series for each posture, 16 HRV metrics were calculated. Based on statistical analysis, the HRV metrics that showed the most significant changes in tracking posture were the mean RR, min RR, max RR, RMSDD, SD1, SD1/SD2, DFA a1 , and alpha ( a ). Nevertheless, several HRV indices were inconsistent, indicating that these values depended on the length of the recording time window. In addition, classification performance deteriorated if it was not specifically tailored or calibrated for each participant. The findings of this study reveal that mean RR, RMSDD, and SD1 provided the best posture classification performance using the ultra-short-term HRV analysis. Among these indices, the most sensitive index was RMSDD, showing an 82% change when comparing lying to standing postures. The consistency of these HRV indices across different time windows suggests that these indices are largely independent of the time window and exhibit changes within the same range as those reported in previous studies. |
dc.description.sponsorship | This work was supported by Spanish Ministerio de Ciencia e Innovación under Project PID2019-107473RB-C2. |
dc.format.extent | 13 p. |
dc.language.iso | eng |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.subject | Àrees temàtiques de la UPC::Enginyeria electrònica::Microelectrònica |
dc.subject.other | Posture changes |
dc.subject.other | Heart Rate Variability (HRV) |
dc.subject.other | Ultra-short-term |
dc.subject.other | Analysis |
dc.title | Using ultra-short-term Heart Rate Variability (HRV) analysis to track posture changes |
dc.type | Article |
dc.contributor.group | Universitat Politècnica de Catalunya. IEB - Instrumentació Electrònica i Biomèdica |
dc.identifier.doi | 10.1109/ACCESS.2024.3424245 |
dc.description.peerreviewed | Peer Reviewed |
dc.relation.publisherversion | https://ieeexplore.ieee.org/document/10587001 |
dc.rights.access | Open Access |
local.identifier.drac | 39545993 |
dc.description.version | Postprint (published version) |
dc.relation.projectid | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107473RB-C22/ES/METODOS NO INTRUSIVOS PARA MONITORIZAR EL PROCESO DE ESFUERZO%2FRECUPERACION BASADOS EN EL ANALISIS DE LA CALIDAD DEL SUEÑO Y LA ESTIMACION DEL BALANCE DE CARGA INTERNA%2FEXTERNA/ |
local.citation.author | Mohammadpoorfaskhodi, M.; Fernandez, M.; Garcia, M. |
local.citation.publicationName | IEEE access |
local.citation.volume | 12 |
local.citation.startingPage | 129994 |
local.citation.endingPage | 130006 |