Electroresponsive thiol-yne click-hydrogels for insulin smart delivery: tackling sustained release and leakage control
View/Open
Article (2,699Mb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/415548
Document typeArticle
Defense date2024-07-11
PublisherAmerican Chemical Society (ACS)
Rights accessRestricted access - publisher's policy
(embargoed until 2025-07-11)
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 4.0 International
Abstract
Diabetes is a metabolic disorder caused by the body’s inability to produce or use insulin. Considering the figures projected by the World Health Organization, research on insulin therapy is crucial. Hence, we present a soft biointerface based on a thiol–yne poly(ethylene glycol) (PEG) click-hydrogel as an advanced treatment option to administrate insulin. Most importantly, the device is rendered electroactive by incorporating biocompatible poly(3,4-ethylenedioxythiophene) nanoparticles (PEDOT NPs) as conductive moieties to precisely control the release of insulin over an extended period through electrochemical stimulation (ES). The device has been carefully optimized on account of: (i) the main interactions established between PEDOT- and PEG-based moieties, which have been studied by density functional theory calculations, and reveal the choice of 4-arm PEG precursors as most suitable cross-linkers; and (ii) the concentration of PEDOT NPs in the device, which has been determined considering minimal interference with the gelation process, as well as the resulting morphological, mechanical, electrochemical, and cytocompatible properties of the PEG-based click-hydrogels. Finally, the management over insulin delivery through ES is verified in vitro, with released insulin being detected by high-performance liquid chromatography. Overall, our hydrogel-based device establishes a method for controlled insulin delivery with the potential for translation to other relevant bioelectronic applications.
CitationMuñoz, H. [et al.]. Electroresponsive thiol-yne click-hydrogels for insulin smart delivery: tackling sustained release and leakage control. "ACS applied polymer materials", 11 Juliol 2024, vol. 6, núm. 14.
ISSN2637-6105
Publisher versionhttps://pubs.acs.org/doi/10.1021/acsapm.4c00911
Collections
- IMEM-BRT- Innovation in Materials and Molecular Engineering - Biomaterials for Regenerative Therapies - Articles de revista [424]
- Departament d'Enginyeria de Serveis i Sistemes d'Informació - Articles de revista [234]
- Doctorat en Polímers i Biopolímers - Articles de revista [177]
- Departament d'Enginyeria Química - Articles de revista [2.338]
Files | Description | Size | Format | View |
---|---|---|---|---|
ACSApplPolymMat ... M_manuscript_rev-clean.pdf | Article | 2,699Mb | Restricted access |