Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
75.829 UPC academic works
You are here:
View Item 
  •   DSpace Home
  • Treballs acadèmics
  • Màsters oficials
  • Master in Artificial Intelligence - MAI
  • View Item
  •   DSpace Home
  • Treballs acadèmics
  • Màsters oficials
  • Master in Artificial Intelligence - MAI
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

From diverse CT scans to generalization: towards robust abdominal organ segmentation

Thumbnail
View/Open
185690.pdf (7,488Mb)
  View UPCommons Usage Statistics
  LA Referencia / Recolecta stats
Includes usage data since 2022
Cita com:
hdl:2117/413967

Show full item record
Álvarez Llopis, Nicolás
Tutor / directorGarcia Gasulla, DarioMés informacióMés informació; De La Iglesia Vayá, Mariam
Document typeMaster thesis
Date2024-06-27
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
Abdominal organ segmentation is a rapidly advancing area in medical imaging, boasting numerous remarkable applications in clinical and research settings. Despite these advancements, most existing segmentation models are developed using single-source data. This homogeneity raises concerns regarding the applicability of these models to more diverse and complex clinical scenarios. This study aimed to develop a generalizable model for the semantic segmentation of abdominal organs using three widely recognized public datasets: BTCV, AMOS, and TotalSegmentator. Extensive cleaning and preprocessing were undertaken to address the challenges posed by data heterogeneity. The merging process resulted in a diverse and comprehensive dataset of 680 CT scans that encapsulates varied image conditions and anatomical representations. The comparative analysis utilized two architectural frameworks: nnUNet, representing Convolutional Neural Networks, and Swin-UNETR embodying Vision Transformers. Results demonstrate the superiority of the nnUNet model across all experiments, demonstrating superior robustness and adaptability under diverse conditions and unseen cases, although further research could contribute to achieving a more balanced performance across patient groups. With an average Dice Similarity Coefficient of 92.3%, the developed nnUNet model establishes itself as a highly effective and competitive approach in the field of abdominal organ segmentation.
SubjectsTomography, Image segmentation, Tomografia, Imatges--Segmentació
DegreeMÀSTER UNIVERSITARI EN INTEL·LIGÈNCIA ARTIFICIAL (Pla 2017)
URIhttp://hdl.handle.net/2117/413967
Collections
  • Màsters oficials - Master in Artificial Intelligence - MAI [328]
  View UPCommons Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
185690.pdf7,488MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Metadata under:Metadata under CC0
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina