Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
68.761 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Teoria del Senyal i Comunicacions
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Teoria del Senyal i Comunicacions
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Convolutional neural network-based onboard band selection for hyperspectral data with coarse band-to-band alignment

Thumbnail
View/Open
Convolutional-Neural-Network-Based_Onboard_Band_Selection_for_Hyperspectral_Data_With_Coarse_Band-to-Band_Alignment.pdf (3,820Mb)
 
10.1109/JSTARS.2024.3428991
 
  View UPCommons Usage Statistics
  LA Referencia / Recolecta stats
Includes usage data since 2022
Cita com:
hdl:2117/412666

Show full item record
Llaveria Godoy, DavidMés informacióMés informacióMés informació
Longepe, Nicolas
Meoni, Gabriele
del Prete, Roberto
Camps Carmona, Adriano JoséMés informacióMés informacióMés informació
Document typeArticle
Defense date2024-07-16
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 4.0 International
This work is protected by the corresponding intellectual and industrial property rights. Except where otherwise noted, its contents are licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 4.0 International
ProjectGNSS ENVIRONMENTAL AND SOCIETAL MISSIONS - SUBPROJECT UPC (AEI-PID2021-126436OB-C21)
Abstract
Band selection is a key strategy to address the challenges of managing large hyperspectral datasets and reduce the dimensionality problem associated with the simultaneous analysis of hundreds of spectral bands. However, the computational complexity of traditional methods makes the algorithms difficult to be deployed on board satellites. This is especially true for Small Satellites with limited computational and power resources. Moreover, existing band selection techniques often require the hypercube to be processed at least at Level-1B product, i.e., the bands need to be finely aligned before selecting them, demanding more computational resources for the on-board computer. This study presents a novel neural network-based approach for on-board band selection using data with coarse band-to-band aligned. This methodology not only simplifies the pre-processing requirements, but also opens new possibilities for efficient hyperspectral imaging from space on-board Small Satellites, such as classification, change and target detection.
CitationLlaveria, D. [et al.]. Convolutional neural network-based onboard band selection for hyperspectral data with coarse band-to-band alignment. "IEEE journal of selected topics in applied earth observations and remote sensing", 16 Juliol 2024, vol. 17, p. 16467-16475. 
URIhttp://hdl.handle.net/2117/412666
DOI10.1109/JSTARS.2024.3428991
ISSN1939-1404
Publisher versionhttps://ieeexplore.ieee.org/document/10599786
Collections
  • Departament de Teoria del Senyal i Comunicacions - Articles de revista [2.636]
  • Doctorat en Teoria del Senyal i Comunicacions - Articles de revista [257]
  View UPCommons Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
Convolutional-N ... Band-to-Band_Alignment.pdf3,820MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Metadata under:Metadata under CC0
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina