Show simple item record

dc.contributor.authorVázquez Alcocer, Pere Pau
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Ciències de la Computació
dc.date.accessioned2024-07-11T10:40:03Z
dc.date.available2024-07-11T10:40:03Z
dc.date.issued2024
dc.identifier.citationVazquez, P. Are LLMs ready for visualization? A: IEEE Pacific Visualization Conference. "2024 IEEE 17th Pacific Visualization Conference, PacificVis 2024: Tokyo, Japan, 23-26 April 2024: proceedings". Institute of Electrical and Electronics Engineers (IEEE), 2024, p. 343-352. ISBN 979-8-3503-9380-4. DOI 10.1109/PacificVis60374.2024.00049 .
dc.identifier.isbn979-8-3503-9380-4
dc.identifier.urihttp://hdl.handle.net/2117/411543
dc.description© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
dc.description.abstractGenerative models have received a lot of attention in many areas of academia and the industry. Their capabilities span many areas, from the invention of images given a prompt to the generation of concrete code to solve a certain programming issue. These two paradigmatic cases fall within two distinct categories of requirements, ranging from "creativity" to "precision", as characterized by Bing Chat, which employs ChatGPT-4 as its backbone. Visualization practitioners and researchers have wondered to what end one of such systems could accomplish our work in a more efficient way. Several works in the literature have utilized them for the creation of visualizations. And some tools such as Lida, incorporate them as part of their pipeline. Nevertheless, to the authors’ knowledge, no systematic approach for testing their capabilities has been published, which includes both extensive and in-depth evaluation. Our goal is to fill that gap with a systematic approach that analyzes three elements: whether Large Language Models are capable of correctly generating a large variety of charts, what libraries they can deal with effectively, and how far we can go to configure individual charts. To achieve this objective, we initially selected a diverse set of charts, which are commonly utilized in data visualization. We then developed a set of generic prompts that could be used to generate them, and analyzed the performance of different LLMs and libraries. The results include both the set of prompts and the data sources, as well as an analysis of the performance with different configurations.
dc.description.sponsorshipSupported by Ministerio de Ciencia e Innovación/AEI (PID2021-122136OB-C21 by 10.13039/501100011033/FEDER, UE).
dc.format.extent10 p.
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.subjectÀrees temàtiques de la UPC::Informàtica::Infografia
dc.subjectÀrees temàtiques de la UPC::Informàtica::Intel·ligència artificial::Llenguatge natural
dc.subject.lcshInformation visualization
dc.subject.otherVisualization techniques
dc.subject.otherEmpirical studies in visualization
dc.subject.otherIndustries
dc.subject.otherTechnological innovation
dc.subject.otherSystematics
dc.subject.otherSoft sensors
dc.subject.otherPipelines
dc.subject.otherData visualization
dc.subject.otherProgramming
dc.subject.otherBing Chat
dc.subject.otherChatGPT-4
dc.subject.otherGenerative models
dc.titleAre LLMs ready for visualization?
dc.typeConference lecture
dc.subject.lemacVisualització de la informació
dc.contributor.groupUniversitat Politècnica de Catalunya. ViRVIG - Grup de Recerca en Visualització, Realitat Virtual i Interacció Gràfica
dc.identifier.doi10.1109/PacificVis60374.2024.00049
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://ieeexplore.ieee.org/document/10541799
dc.rights.accessOpen Access
local.identifier.drac39309808
dc.description.versionPostprint (author's final draft)
dc.relation.projectidinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-122136OB-C21/ES/ENTORNOS 3D DE ALTA FIDELIDAD PARA REALIDAD VIRTUAL Y COMPUTACION VISUAL: GEOMETRIA, MOVIMIENTO, INTERACCION Y VISUALIZACION PARA SALUD, ARQUITECTURA Y CIUDADES/
local.citation.authorVazquez, P.
local.citation.contributorIEEE Pacific Visualization Conference
local.citation.publicationName2024 IEEE 17th Pacific Visualization Conference, PacificVis 2024: Tokyo, Japan, 23-26 April 2024: proceedings
local.citation.startingPage343
local.citation.endingPage352


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record