Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
69.088 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Teoria del Senyal i Comunicacions
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Teoria del Senyal i Comunicacions
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

BCN20000: dermoscopic lesions in the wild

Thumbnail
View/Open
s41597-024-03387-w.pdf (2,204Mb)
 
10.1038/s41597-024-03387-w
 
  View UPCommons Usage Statistics
  LA Referencia / Recolecta stats
Includes usage data since 2022
Cita com:
hdl:2117/411483

Show full item record
Hernández Pérez, CarlosMés informacióMés informació
Combalia Escudero, Marc
Podlipnik, Sebastian
Codella, Noel C. F.
Rotemberg, Veronica
Halpern, Allan C.
Reiter, Ofer
Carrera Álvarez, Cristina
Barreiro Capurro, Alicia
Helba, Brian
Puig Sardá, Susana
Vilaplana Besler, VerónicaMés informacióMés informacióMés informació
Malvehy Guilera, Josep
Document typeArticle
Defense date2024-06-17
PublisherNature
Rights accessOpen Access
Attribution 4.0 International
This work is protected by the corresponding intellectual and industrial property rights. Except where otherwise noted, its contents are licensed under a Creative Commons license : Attribution 4.0 International
ProjectINTELIGENCIA ARTIFICIAL INSESGADA Y EXPLICABLE PARA IMAGENES MEDICAS (AEI-PID2020-116907RB-I00)
Abstract
Advancements in dermatological artificial intelligence research require high-quality and comprehensive datasets that mirror real-world clinical scenarios. We introduce a collection of 18,946 dermoscopic images spanning from 2010 to 2016, collated at the Hospital Clínic in Barcelona, Spain. The BCN20000 dataset aims to address the problem of unconstrained classification of dermoscopic images of skin cancer, including lesions in hard-to-diagnose locations such as those found in nails and mucosa, large lesions which do not fit in the aperture of the dermoscopy device, and hypo-pigmented lesions. Our dataset covers eight key diagnostic categories in dermoscopy, providing a diverse range of lesions for artificial intelligence model training. Furthermore, a ninth out-of-distribution (OOD) class is also present on the test set, comprised of lesions which could not be distinctively classified as any of the others. By providing a comprehensive collection of varied images, BCN20000 helps bridge the gap between the training data for machine learning models and the day-to-day practice of medical practitioners. Additionally, we present a set of baseline classifiers based on state-of-the-art neural networks, which can be extended by other researchers for further experimentation.
CitationHernandez, C. [et al.]. BCN20000: dermoscopic lesions in the wild. "Scientific data", 17 Juny 2024, vol. 11, article 641. 
URIhttp://hdl.handle.net/2117/411483
DOI10.1038/s41597-024-03387-w
ISSN2052-4463
Publisher versionhttps://www.nature.com/articles/s41597-024-03387-w
Collections
  • Departament de Teoria del Senyal i Comunicacions - Articles de revista [2.644]
  View UPCommons Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
s41597-024-03387-w.pdf2,204MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Metadata under:Metadata under CC0
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina