Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
69.161 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • SEER - Sistemes Elèctrics d'Energia Renovable
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • SEER - Sistemes Elèctrics d'Energia Renovable
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Detection of abnormal photovoltaic systems’ operation with minimum data requirements based on Recursive Least Squares algorithms

Thumbnail
View/Open
manuscript.pdf (9,456Mb)
 
10.1016/j.solener.2024.112556
 
  View UPCommons Usage Statistics
  LA Referencia / Recolecta stats
Includes usage data since 2022
Cita com:
hdl:2117/410600

Show full item record
Laguna Benet, Gerard
Moreno Kübel, Pablo AlexanderMés informació
Cipriano Lindez, Jordi
Mor Martínez, Gerard
Gabaldon Ponsa, Eloi
Luna Alloza, ÁlvaroMés informacióMés informacióMés informació
Document typeArticle
Defense date2024-05
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 4.0 International
This work is protected by the corresponding intellectual and industrial property rights. Except where otherwise noted, its contents are licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 4.0 International
Abstract
In the last years, the massive deployment of new photovoltaic (PV) power plants has launched the connection of PV inverters to the electrical network. A single medium-sized ground-mounted PV plant may have thousands of these inverters linked to the grid and even more PV panels on the DC side. Upon reaching such a substantial magnitude of devices involved in grid-connected installations, the effective operation, management, predictive maintenance, and fault detection becomes increasingly challenging without integrating advanced prediction and automated anomaly detection systems. Artificial intelligence algorithms, grounded in data measurements, can be pivotal in addressing this challenge. This paper proposes several regression-based methods to predict PV plants’ energy generation, which is useful for detecting transient and long-term anomalies. These models are trained using a Recursive Least Squares (RLS) method and require a minimum number of variables to yield satisfactory outcomes, which is one of the paper’s contributions. They mainly rely on energy generation measurements and geolocation. Within the scope of this research, two distinct algorithms have been implemented and validated. The first algorithm, a simplified model, is engineered to analyze the daily efficiency variation, prioritizing the identification of faults and abnormal operational profiles in PV plants. On the other hand, the second algorithm adopts a more intricate model tailored to facilitate long-term diagnosis, enabling the assessment of PV efficiency degradation. In this work, both algorithms are described and their performance is validated using the historical data from more than 20 PV plants placed in different climatic regions.
CitationLaguna, G. [et al.]. Detection of abnormal photovoltaic systems' operation with minimum data requirements based on Recursive Least Squares algorithms. "Solar energy", Maig 2024, vol. 274, núm. article 112556. 
URIhttp://hdl.handle.net/2117/410600
DOI10.1016/j.solener.2024.112556
ISSN0038-092X
Publisher versionhttps://www.sciencedirect.com/science/article/pii/S0038092X24002500
Collections
  • SEER - Sistemes Elèctrics d'Energia Renovable - Articles de revista [148]
  • Doctorat en Sistemes d'Energia Elèctrica - Articles de revista [21]
  • CIMNE - Centre Internacional de Mètodes Numèrics en Enginyeria - Articles de revista [1.085]
  • Departament d'Enginyeria Elèctrica - Articles de revista [989]
  View UPCommons Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
manuscript.pdf9,456MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Metadata under:Metadata under CC0
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina