Show simple item record

dc.contributor.authorPérez Guindal, Elsa
dc.contributor.authorLlanas Parra, Francesc Xavier
dc.contributor.authorMusté Rodríguez, Marta
dc.contributor.authorPérez López, Carlos
dc.contributor.authorMacho Pérez, Oscar
dc.contributor.authorCatalà Mallofré, Andreu
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Resistència de Materials i Estructures a l'Enginyeria
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial
dc.date.accessioned2024-06-12T11:46:24Z
dc.date.available2024-06-12T11:46:24Z
dc.date.issued2024-06-06
dc.identifier.citationPerez, E. [et al.]. Analysis of the correspondence of the degree of fragility with the way to exercise the force of the hand. "The Journal of frailty & aging", 6 Juny 2024, vol. 13, núm. 3, p. 248-253.
dc.identifier.issn2273-4309
dc.identifier.urihttp://hdl.handle.net/2117/409713
dc.description.abstractBACKGROUND: Frailty is a geriatric syndrome characterized by increased individual vulnerability with an increase in both dependence and mortality when exposed to external stressors. The use of Frailty Indices in routine clinical practice is limited by several factors, such as the cognitive status of the patient, times of consultation, or lack of prior information from the patient. OBJECTIVES: In this study, we propose the generation of an objective measure of frailty, based on the signal from hand grip strength (HGS). DESIGN AND MEASUREMENTS: This signal was recorded with a modified Deyard dynamometer and processed using machine learning strategies based on supervised learning methods to train classifiers. A database was generated from a cohort of 138 older adults in a transverse pilot study that combined classical geriatric questionnaires with physiological data. PARTICIPANTS: Participants were patients selected by geriatricians of medical services provided by collaborating entities. SETTINGS AND RESULTS: To process the generated information 20 selected significant features of the HGS dataset were filtered, cleaned, and extracted. A technique based on a combination of the Synthetic Minority Oversampling Technique (SMOTE) to generate new samples from the smallest group and ENN (technique based on K-nearest neighbors) to remove noisy samples provided the best results as a well-balanced distribution of data. CONCLUSION: A Random Forest Classifier was trained to predict the frailty label with 92.9% of accuracy, achieving sensitivities higher than 90%.
dc.description.sponsorshipThis work was partially supported by the Spanish Ministry of “Ciencia, Innovación y Universidades” under project RTI2018-096701-B-C22, and by the Catalonia FEDER program, resolution GAH/815/2018 under the project, “PECT Garraf: Envelliment actiu i saludable i dependència”. Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.
dc.language.isoeng
dc.publisherSpringer
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectÀrees temàtiques de la UPC::Enginyeria biomèdica
dc.subjectÀrees temàtiques de la UPC::Ciències de la salut::Medicina::Geriatria
dc.subject.lcshOlder people
dc.subject.lcshBrittleness
dc.subject.otherComprehensive geriatric assessment
dc.subject.otherFrailty identification
dc.subject.otherHand grip strength
dc.subject.otherRandom forests
dc.subject.otherSupervised learning
dc.titleAnalysis of the correspondence of the degree of fragility with the way to exercise the force of the hand
dc.typeArticle
dc.subject.lemacPersones grans
dc.subject.lemacFragilitat
dc.contributor.groupUniversitat Politècnica de Catalunya. TOC - Tecnologia orientada a la comunitat
dc.identifier.doi10.14283/jfa.2024.46
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://link.springer.com/article/10.14283/jfa.2024.46
dc.rights.accessOpen Access
local.identifier.drac39330636
dc.description.versionPostprint (published version)
dc.relation.projectidinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096701-B-C22/ES/MONITORIZACION MEDIANTE SENSORES VESTIBLES DE USUARIOS DE ANDADOR ROBOTIZADO CON PROBLEMAS DE MOVILIDAD/
local.citation.authorPerez, E.; Parra, X.; Muste, M.; López, C.; Macho, O.; Catala, A.
local.citation.publicationNameThe Journal of frailty & aging
local.citation.volume13
local.citation.number3
local.citation.startingPage248
local.citation.endingPage253


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record