dc.contributor.author | Pérez Cervera, Alberto |
dc.contributor.author | Teruel Aguilar, Antonio E. |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament de Matemàtiques |
dc.date.accessioned | 2024-06-11T09:57:03Z |
dc.date.issued | 2024-03-03 |
dc.identifier.citation | Perez, A.; Teruel, A. Slow passage through a transcritical bifurcation in piecewise linear differential systems: canard explosion and enhanced delay. "Communications in nonlinear science and numerical simulation", 3 Març 2024, vol. 135, núm. 108044. |
dc.identifier.issn | 1878-7274 |
dc.identifier.other | https://arxiv.org/abs/2309.10119 |
dc.identifier.uri | http://hdl.handle.net/2117/409561 |
dc.description.abstract | In this paper we analyse the phenomenon of the slow passage through a transcritical bifurcation with special emphasis in the maximal delay ¿ as a function of the bifurcation parameter and the singular parameter ¿ . We quantify the maximal delay by constructing a piecewise linear (PWL) transcritical minimal model and studying the dynamics near the slow-manifolds. Our findings encompass all potential maximum delay behaviours within the range of parameters, allowing us to identify: (i) the trivial scenario where the maximal delay tends to zero with the singular parameter; (ii) the singular scenario where ¿ is not bounded, and also (iii) the transitional scenario where the maximal delay tends to a positive finite value as the singular parameter goes to zero. Moreover, building upon the concepts by Vidal and Françoise (2012), we construct a PWL system combining symmetrically two transcritical minimal models in such a way it shows periodic behaviour. As the parameter changes, the system presents a non-bounded canard explosion leading to an enhanced delay phenomenon at the critical value. Our understanding of the maximal delay ¿ of a single normal form, allows us to determine both, the amplitude of the canard cycles and, in the enhanced delay case, the increase of the amplitude for each passage. |
dc.description.sponsorship | AET is partially supported by the MCIU project PID2020-118726GB-I00 and by the Ministerio de Economia y Competitividad through the project MTM2017-83568-P (AEI/ERDF,EU). APC thanks the Departament de Matemàtiques i Informàtica of the UIB and the Instituto de Fisica Interdisciplinar y Sistemas Complejos (IFISC, UIB-CSIC) for hosting him during pandemic times. APC acknowledges support from Spanish Ministry of Science and Innovation grants (Projects No. PID2021-124047NB-I00 and PID-2021-122954NB-100). |
dc.language.iso | eng |
dc.publisher | Elsevier |
dc.subject | Àrees temàtiques de la UPC::Matemàtiques i estadística::Equacions diferencials i integrals::Sistemes dinàmics |
dc.subject.lcsh | Dynamical systems |
dc.subject.lcsh | Ergodic theory |
dc.subject.other | Piecewise linear systems |
dc.subject.other | Dynamic bifurcations |
dc.subject.other | Slow passage |
dc.subject.other | Transcritic bifurcation |
dc.subject.other | Enhanced delay |
dc.title | Slow passage through a transcritical bifurcation in piecewise linear differential systems: canard explosion and enhanced delay |
dc.type | Article |
dc.subject.lemac | Sistemes dinàmics diferenciables |
dc.subject.lemac | Teoria ergòdica |
dc.contributor.group | Universitat Politècnica de Catalunya. UPCDS - Grup de Sistemes Dinàmics de la UPC |
dc.identifier.doi | 10.1016/j.cnsns.2024.108044 |
dc.description.peerreviewed | Peer Reviewed |
dc.subject.ams | Classificació AMS::37 Dynamical systems and ergodic theory |
dc.relation.publisherversion | https://www.sciencedirect.com/science/article/pii/S1007570424002296 |
dc.rights.access | Restricted access - publisher's policy |
local.identifier.drac | 38978640 |
dc.description.version | Preprint |
dc.relation.projectid | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-118726GB-I00/ES/ECUACIONES DIFERENCIALES, ECUACIONES DE ABEL, CONDUCTANCIA SINAPTICA, CICLO LIMITE, NEUROCIENCIA, CICLOS DE CANARD, BUSTING, SISTEMA DIFERENCIAL LINEAL A TROZOS, BIFURCACION D/ |
dc.date.lift | 2026-03-03 |
local.citation.author | Perez, A.; Teruel, A. |
local.citation.publicationName | Communications in nonlinear science and numerical simulation |
local.citation.volume | 135 |
local.citation.number | 108044 |