Show simple item record

dc.contributor.authorPérez Cervera, Alberto
dc.contributor.authorTeruel Aguilar, Antonio E.
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtiques
dc.date.accessioned2024-06-11T09:57:03Z
dc.date.issued2024-03-03
dc.identifier.citationPerez, A.; Teruel, A. Slow passage through a transcritical bifurcation in piecewise linear differential systems: canard explosion and enhanced delay. "Communications in nonlinear science and numerical simulation", 3 Març 2024, vol. 135, núm. 108044.
dc.identifier.issn1878-7274
dc.identifier.otherhttps://arxiv.org/abs/2309.10119
dc.identifier.urihttp://hdl.handle.net/2117/409561
dc.description.abstractIn this paper we analyse the phenomenon of the slow passage through a transcritical bifurcation with special emphasis in the maximal delay ¿ as a function of the bifurcation parameter and the singular parameter ¿ . We quantify the maximal delay by constructing a piecewise linear (PWL) transcritical minimal model and studying the dynamics near the slow-manifolds. Our findings encompass all potential maximum delay behaviours within the range of parameters, allowing us to identify: (i) the trivial scenario where the maximal delay tends to zero with the singular parameter; (ii) the singular scenario where ¿ is not bounded, and also (iii) the transitional scenario where the maximal delay tends to a positive finite value as the singular parameter goes to zero. Moreover, building upon the concepts by Vidal and Françoise (2012), we construct a PWL system combining symmetrically two transcritical minimal models in such a way it shows periodic behaviour. As the parameter changes, the system presents a non-bounded canard explosion leading to an enhanced delay phenomenon at the critical value. Our understanding of the maximal delay ¿ of a single normal form, allows us to determine both, the amplitude of the canard cycles and, in the enhanced delay case, the increase of the amplitude for each passage.
dc.description.sponsorshipAET is partially supported by the MCIU project PID2020-118726GB-I00 and by the Ministerio de Economia y Competitividad through the project MTM2017-83568-P (AEI/ERDF,EU). APC thanks the Departament de Matemàtiques i Informàtica of the UIB and the Instituto de Fisica Interdisciplinar y Sistemas Complejos (IFISC, UIB-CSIC) for hosting him during pandemic times. APC acknowledges support from Spanish Ministry of Science and Innovation grants (Projects No. PID2021-124047NB-I00 and PID-2021-122954NB-100).
dc.language.isoeng
dc.publisherElsevier
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Equacions diferencials i integrals::Sistemes dinàmics
dc.subject.lcshDynamical systems
dc.subject.lcshErgodic theory
dc.subject.otherPiecewise linear systems
dc.subject.otherDynamic bifurcations
dc.subject.otherSlow passage
dc.subject.otherTranscritic bifurcation
dc.subject.otherEnhanced delay
dc.titleSlow passage through a transcritical bifurcation in piecewise linear differential systems: canard explosion and enhanced delay
dc.typeArticle
dc.subject.lemacSistemes dinàmics diferenciables
dc.subject.lemacTeoria ergòdica
dc.contributor.groupUniversitat Politècnica de Catalunya. UPCDS - Grup de Sistemes Dinàmics de la UPC
dc.identifier.doi10.1016/j.cnsns.2024.108044
dc.description.peerreviewedPeer Reviewed
dc.subject.amsClassificació AMS::37 Dynamical systems and ergodic theory
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S1007570424002296
dc.rights.accessRestricted access - publisher's policy
local.identifier.drac38978640
dc.description.versionPreprint
dc.relation.projectidinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-118726GB-I00/ES/ECUACIONES DIFERENCIALES, ECUACIONES DE ABEL, CONDUCTANCIA SINAPTICA, CICLO LIMITE, NEUROCIENCIA, CICLOS DE CANARD, BUSTING, SISTEMA DIFERENCIAL LINEAL A TROZOS, BIFURCACION D/
dc.date.lift2026-03-03
local.citation.authorPerez, A.; Teruel, A.
local.citation.publicationNameCommunications in nonlinear science and numerical simulation
local.citation.volume135
local.citation.number108044


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record