Slow passage through a transcritical bifurcation in piecewise linear differential systems: canard explosion and enhanced delay
View/Open
2309.10119v2.pdf (969,9Kb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/409561
Document typeArticle
Defense date2024-03-03
PublisherElsevier
Rights accessRestricted access - publisher's policy
(embargoed until 2026-03-03)
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
In this paper we analyse the phenomenon of the slow passage through a transcritical bifurcation with special emphasis in the maximal delay ¿ as a function of the bifurcation parameter and the singular parameter ¿ . We quantify the maximal delay by constructing a piecewise linear (PWL) transcritical minimal model and studying the dynamics near the slow-manifolds. Our findings encompass all potential maximum delay behaviours within the range of parameters, allowing us to identify: (i) the trivial scenario where the maximal delay tends to zero with the singular parameter; (ii) the singular scenario where ¿ is not bounded, and also (iii) the transitional scenario where the maximal delay tends to a positive finite value as the singular parameter goes to zero. Moreover, building upon the concepts by Vidal and Françoise (2012), we construct a PWL system combining symmetrically two transcritical minimal models in such a way it shows periodic behaviour. As the parameter changes, the system presents a non-bounded canard explosion leading to an enhanced delay phenomenon at the critical value. Our understanding of the maximal delay ¿ of a single normal form, allows us to determine both, the amplitude of the canard cycles and, in the enhanced delay case, the increase of the amplitude for each passage.
CitationPerez, A.; Teruel, A. Slow passage through a transcritical bifurcation in piecewise linear differential systems: canard explosion and enhanced delay. "Communications in nonlinear science and numerical simulation", 3 Març 2024, vol. 135, núm. 108044.
ISSN1878-7274
Publisher versionhttps://www.sciencedirect.com/science/article/pii/S1007570424002296
Other identifiershttps://arxiv.org/abs/2309.10119
Collections
Files | Description | Size | Format | View |
---|---|---|---|---|
2309.10119v2.pdf | 969,9Kb | Restricted access |