Show simple item record

dc.contributor.authorSafavi, Vahid
dc.contributor.authorBazmohammadi, Najmeh
dc.contributor.authorVasquez Quintero, Juan Carlos
dc.contributor.authorGuerrero Zapata, Josep Maria
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Electrònica
dc.date.accessioned2024-05-30T13:37:24Z
dc.date.available2024-05-30T13:37:24Z
dc.date.issued2024-01-31
dc.identifier.citationSafavi, V. [et al.]. Battery state-of-health estimation: a step towards battery digital twins. "Electronics (Switzerland)", 31 Gener 2024, vol. 13, núm. 587.
dc.identifier.issn2079-9292
dc.identifier.urihttp://hdl.handle.net/2117/409053
dc.description.abstractFor a lithium-ion (Li-ion) battery to operate safely and reliably, an accurate state of health (SOH) estimation is crucial. Data-driven models with manual feature extraction are commonly used for battery SOH estimation, requiring extensive expert knowledge to extract features. In this regard, a novel data pre-processing model is proposed in this paper to extract health-related features automatically from battery-discharging data for SOH estimation. In the proposed method, one-dimensional (1D) voltage data are converted to two-dimensional (2D) data, and a new data set is created using a 2D sliding window. Then, features are automatically extracted in the machine learning (ML) training process. Finally, the estimation of the SOH is achieved by forecasting the battery voltage in the subsequent cycle. The performance of the proposed technique is evaluated on the NASA public data set for a Li-ion battery degradation analysis in four different scenarios. The simulation results show a considerable reduction in the RMSE of battery SOH estimation. The proposed method eliminates the need for the manual extraction and evaluation of features, which is an important step toward automating the SOH estimation process and developing battery digital twins.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectÀrees temàtiques de la UPC::Enginyeria electrònica
dc.subject.lcshLithium ion batteries
dc.subject.otherLithium-ion batteries
dc.subject.otherState of health
dc.subject.otherData pre-processing
dc.subject.otherDischarging characteristics
dc.subject.otherDigital twin
dc.subject.otherDeep learning
dc.subject.otherCNN-LSTM
dc.titleBattery state-of-health estimation: a step towards battery digital twins
dc.typeArticle
dc.subject.lemacBateries d'ió liti
dc.subject.lemacAprenentatge profund
dc.identifier.doi10.3390/electronics13030587
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://www.mdpi.com/2079-9292/13/3/587
dc.rights.accessOpen Access
local.identifier.drac37971191
dc.description.versionPostprint (published version)
local.citation.authorSafavi, V.; Bazmohammadi, N.; Vasquez , J.C.; Guerrero, J.M.
local.citation.publicationNameElectronics (Switzerland)
local.citation.volume13
local.citation.number587


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record