Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
68.761 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament d'Enginyeria Electrònica
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament d'Enginyeria Electrònica
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Battery state-of-health estimation: a step towards battery digital twins

Thumbnail
View/Open
electronics-13-00587-v2.pdf (5,941Mb)
 
10.3390/electronics13030587
 
  View UPCommons Usage Statistics
  LA Referencia / Recolecta stats
Includes usage data since 2022
Cita com:
hdl:2117/409053

Show full item record
Safavi, Vahid
Bazmohammadi, Najmeh
Vasquez Quintero, Juan Carlos
Guerrero Zapata, Josep MariaMés informacióMés informació
Document typeArticle
Defense date2024-01-31
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 4.0 International
This work is protected by the corresponding intellectual and industrial property rights. Except where otherwise noted, its contents are licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 4.0 International
Abstract
For a lithium-ion (Li-ion) battery to operate safely and reliably, an accurate state of health (SOH) estimation is crucial. Data-driven models with manual feature extraction are commonly used for battery SOH estimation, requiring extensive expert knowledge to extract features. In this regard, a novel data pre-processing model is proposed in this paper to extract health-related features automatically from battery-discharging data for SOH estimation. In the proposed method, one-dimensional (1D) voltage data are converted to two-dimensional (2D) data, and a new data set is created using a 2D sliding window. Then, features are automatically extracted in the machine learning (ML) training process. Finally, the estimation of the SOH is achieved by forecasting the battery voltage in the subsequent cycle. The performance of the proposed technique is evaluated on the NASA public data set for a Li-ion battery degradation analysis in four different scenarios. The simulation results show a considerable reduction in the RMSE of battery SOH estimation. The proposed method eliminates the need for the manual extraction and evaluation of features, which is an important step toward automating the SOH estimation process and developing battery digital twins.
CitationSafavi, V. [et al.]. Battery state-of-health estimation: a step towards battery digital twins. "Electronics (Switzerland)", 31 Gener 2024, vol. 13, núm. 587. 
URIhttp://hdl.handle.net/2117/409053
DOI10.3390/electronics13030587
ISSN2079-9292
Publisher versionhttps://www.mdpi.com/2079-9292/13/3/587
Collections
  • Departament d'Enginyeria Electrònica - Articles de revista [1.850]
  View UPCommons Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
electronics-13-00587-v2.pdf5,941MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Metadata under:Metadata under CC0
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina