Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
69.362 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament d'Arquitectura de Computadors
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament d'Arquitectura de Computadors
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A machine learning estimator trained on synthetic data for real-time earthquake ground-shaking predictions in Southern California

Thumbnail
View/Open
s43247-024-01436-1.pdf (4,437Mb)
 
10.1038/s43247-024-01436-1
 
  View UPCommons Usage Statistics
  LA Referencia / Recolecta stats
Includes usage data since 2022
Cita com:
hdl:2117/408851

Show full item record
Monterrubio Velasco, MarisolMés informació
Callaghan, Scott
Modesto Galende, DavidMés informacióMés informació
Carrasco Jiménez, José Carlos
Badia Sala, Rosa MariaMés informacióMés informacióMés informació
Pallarés Font de Mora, Pablo
Vázquez Novoa, FernandoMés informació
Quintana Ortí, Enrique Salvador
Pienkowska, Marta
de la Puente, Josep
Document typeArticle
Defense date2024-05-16
PublisherNature
Rights accessOpen Access
Attribution 4.0 International
This work is protected by the corresponding intellectual and industrial property rights. Except where otherwise noted, its contents are licensed under a Creative Commons license : Attribution 4.0 International
ProjecteFlows4HPC - Enabling dynamic and Intelligent workflows in the future EuroHPCecosystem (EC-H2020-955558)
ENABLING DYNAMIC AND INTELLIGENT WORKFLOWS IN THE FUTURE EUROHPCECOSYSTEM (AEI-PCI2021-121957)
ChEESE-2P - Center of Excellence for Exascale in Solid Earth (EC-HE-101093038)
Abstract
After large-magnitude earthquakes, a crucial task for impact assessment is to rapidly and accurately estimate the ground shaking in the affected region. To satisfy real-time constraints, intensity measures are traditionally evaluated with empirical Ground Motion Models that can drastically limit the accuracy of the estimated values. As an alternative, here we present Machine Learning strategies trained on physics-based simulations that require similar evaluation times. We trained and validated the proposed Machine Learning-based Estimator for ground shaking maps with one of the largest existing datasets (<100M simulated seismograms) from CyberShake developed by the Southern California Earthquake Center covering the Los Angeles basin. For a well-tailored synthetic database, our predictions outperform empirical Ground Motion Models provided that the events considered are compatible with the training data. Using the proposed strategy we show significant error reductions not only for synthetic, but also for five real historical earthquakes, relative to empirical Ground Motion Models.
CitationMonterrubio, M. [et al.]. A machine learning estimator trained on synthetic data for real-time earthquake ground-shaking predictions in Southern California. "Communications earth & environment", 16 Maig 2024, vol. 5, article 258. 
URIhttp://hdl.handle.net/2117/408851
DOI10.1038/s43247-024-01436-1
ISSN2662-4435
Publisher versionhttps://www.nature.com/articles/s43247-024-01436-1
Collections
  • Departament d'Arquitectura de Computadors - Articles de revista [1.145]
  • Doctorat en Arquitectura de Computadors - Articles de revista [207]
  • Computer Applications in Science & Engineering - Articles de revista [314]
  View UPCommons Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
s43247-024-01436-1.pdf4,437MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Metadata under:Metadata under CC0
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina