Show simple item record

dc.contributorEscalera Guerrero, Sergio
dc.contributorBarquero, German
dc.contributor.authorRuiz Ponce, Pablo
dc.contributor.otherUniversitat Politècnica de Catalunya. Universitat de Barcelona
dc.date.accessioned2024-05-15T15:34:48Z
dc.date.available2024-05-15T15:34:48Z
dc.date.issued2024-01-23
dc.identifier.urihttp://hdl.handle.net/2117/408075
dc.description.abstractThe task of generating human-to-human interactions presents a significant challenge, primarily due to the intricate dynamics involved in these interactions. The complexity of learning these dynamics is compounded by the vast array of possible combinations found in human motion generation. Moreover, a key aspect of generation involves conditioning the output, often through natural language, which, while increasing the complexity, simultaneously makes the approach more accessible. In this thesis, we introduce a novel Diffusion Model incorporating a Transformer-based architecture. This model is conditioned using textual descriptions of both the motion interactions and the individual motions within these interactions. By focusing on the individual components of the interaction, our method achieves more precise conditioning in the generation of these specific motions. Concurrently, the textual descriptions of the overall interaction enable our model to effectively capture the interplay between individual motions. Our approach has been rigorously evaluated using the InterHuman dataset, demonstrating an enhancement over the results achieved by preceding methodologies. Additionally, this thesis contributes to the field through the development of a new Motion-to-Text methodology, the implementation of an innovative multi-weight sampling technique, and the utilization of Large Language Models to augment textual descriptions from motion datasets.
dc.language.isoeng
dc.publisherUniversitat Politècnica de Catalunya
dc.subjectÀrees temàtiques de la UPC::Informàtica::Intel·ligència artificial
dc.subject.lcshArtificial intelligence
dc.subject.otherText-a-Interacció
dc.subject.otherText-a-Moviment
dc.subject.otherMoviment-a-Text
dc.subject.otherModels de Difusió
dc.subject.otherTransformers
dc.subject.otherModels Generatius
dc.subject.otherGeneració de Moviment Humà.
dc.subject.otherText-to-Interaction
dc.subject.otherText-to-Motion
dc.subject.otherMotion-to-Text
dc.subject.otherDiffusion Models
dc.subject.otherTransformers
dc.subject.otherGenerative Models
dc.subject.otherHuman Motion Generation
dc.titleText-driven multi-human motion generation
dc.typeMaster thesis
dc.subject.lemacIntel·ligència artificial
dc.identifier.slug183226
dc.rights.accessOpen Access
dc.date.updated2024-01-30T05:01:01Z
dc.audience.educationlevelMàster
dc.audience.mediatorFacultat d'Informàtica de Barcelona
dc.audience.degreeMÀSTER UNIVERSITARI EN INTEL·LIGÈNCIA ARTIFICIAL (Pla 2017)


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record