dc.contributor | Igual Muñoz, Laura |
dc.contributor.author | Ferrando Garrido, Albert |
dc.contributor.other | Universitat Politècnica de Catalunya. Universitat de Barcelona |
dc.date.accessioned | 2024-05-10T07:24:15Z |
dc.date.available | 2024-05-10T07:24:15Z |
dc.date.issued | 2023-10-19 |
dc.identifier.uri | http://hdl.handle.net/2117/407795 |
dc.description.abstract | The brain tumor segmentation (BraTS) Challenge is an international competition that focuses on the task of automated segmentation of the different parts of brain tumors in magnetic resonance imaging (MRI) scans. U-Net architecture has become the de-facto standard for medical image segmentation tasks, and the proposals based on this architecture have been among the top-ranked solution proposals in the last editions. The 2023 edition of the BraTS challenge introduced a set of 4 new datasets towards addressing additional populations (e.g., sub-Saharan Africa patients) and types of tumors (e.g., meningioma). The goal of this thesis is to train and test different U-Net based architectures using the datasets of the 2023 edition, and to compare and analyse the performance of the different methods both quantitatively and qualitatively. |
dc.language.iso | eng |
dc.publisher | Universitat Politècnica de Catalunya |
dc.subject | Àrees temàtiques de la UPC::Informàtica::Intel·ligència artificial |
dc.subject.lcsh | Imaging systems in medicine |
dc.subject.lcsh | Machine learning |
dc.subject.lcsh | Deep learning (Machine learning) |
dc.subject.lcsh | Image segmentation |
dc.subject.other | BraTS-Africa |
dc.subject.other | U-Net |
dc.subject.other | Swin Transformer |
dc.subject.other | Swin UNETR |
dc.subject.other | BraTS challenge |
dc.subject.other | MRI scans |
dc.subject.other | aprenentatge automàtic |
dc.subject.other | aprenentatge profund |
dc.subject.other | aprenentatge per transferència |
dc.subject.other | imatges biomèdiques |
dc.subject.other | segmentació d'imatges mèdiques |
dc.subject.other | segmentació de tumors cerebrals |
dc.subject.other | concurs BraTS |
dc.subject.other | ressonància magnètica |
dc.subject.other | glioma adult |
dc.subject.other | meningioma intracranial |
dc.subject.other | metàstasis cerebrals |
dc.subject.other | tumors pediàtrics |
dc.subject.other | machine learning |
dc.subject.other | deep learning |
dc.subject.other | transfer learning |
dc.subject.other | biomedical images |
dc.subject.other | medical image segmentation |
dc.subject.other | brain tumor segmentation |
dc.subject.other | adult glioma |
dc.subject.other | intracranial meningioma |
dc.subject.other | brain metastases |
dc.subject.other | pediatric tumors |
dc.title | A comparison study of U-Net based methods for brain tumor segmentation |
dc.type | Master thesis |
dc.subject.lemac | Imatgeria mèdica |
dc.subject.lemac | Aprenentatge automàtic |
dc.subject.lemac | Aprenentatge profund |
dc.subject.lemac | Imatges--Segmentació |
dc.identifier.slug | 178931 |
dc.rights.access | Open Access |
dc.date.updated | 2023-11-15T05:00:23Z |
dc.audience.educationlevel | Màster |
dc.audience.mediator | Facultat d'Informàtica de Barcelona |
dc.audience.degree | MÀSTER UNIVERSITARI EN INTEL·LIGÈNCIA ARTIFICIAL (Pla 2017) |
dc.contributor.covenantee | Universitat de Barcelona |