Show simple item record

dc.contributorIgual Muñoz, Laura
dc.contributor.authorFerrando Garrido, Albert
dc.contributor.otherUniversitat Politècnica de Catalunya. Universitat de Barcelona
dc.date.accessioned2024-05-10T07:24:15Z
dc.date.available2024-05-10T07:24:15Z
dc.date.issued2023-10-19
dc.identifier.urihttp://hdl.handle.net/2117/407795
dc.description.abstractThe brain tumor segmentation (BraTS) Challenge is an international competition that focuses on the task of automated segmentation of the different parts of brain tumors in magnetic resonance imaging (MRI) scans. U-Net architecture has become the de-facto standard for medical image segmentation tasks, and the proposals based on this architecture have been among the top-ranked solution proposals in the last editions. The 2023 edition of the BraTS challenge introduced a set of 4 new datasets towards addressing additional populations (e.g., sub-Saharan Africa patients) and types of tumors (e.g., meningioma). The goal of this thesis is to train and test different U-Net based architectures using the datasets of the 2023 edition, and to compare and analyse the performance of the different methods both quantitatively and qualitatively.
dc.language.isoeng
dc.publisherUniversitat Politècnica de Catalunya
dc.subjectÀrees temàtiques de la UPC::Informàtica::Intel·ligència artificial
dc.subject.lcshImaging systems in medicine
dc.subject.lcshMachine learning
dc.subject.lcshDeep learning (Machine learning)
dc.subject.lcshImage segmentation
dc.subject.otherBraTS-Africa
dc.subject.otherU-Net
dc.subject.otherSwin Transformer
dc.subject.otherSwin UNETR
dc.subject.otherBraTS challenge
dc.subject.otherMRI scans
dc.subject.otheraprenentatge automàtic
dc.subject.otheraprenentatge profund
dc.subject.otheraprenentatge per transferència
dc.subject.otherimatges biomèdiques
dc.subject.othersegmentació d'imatges mèdiques
dc.subject.othersegmentació de tumors cerebrals
dc.subject.otherconcurs BraTS
dc.subject.otherressonància magnètica
dc.subject.otherglioma adult
dc.subject.othermeningioma intracranial
dc.subject.othermetàstasis cerebrals
dc.subject.othertumors pediàtrics
dc.subject.othermachine learning
dc.subject.otherdeep learning
dc.subject.othertransfer learning
dc.subject.otherbiomedical images
dc.subject.othermedical image segmentation
dc.subject.otherbrain tumor segmentation
dc.subject.otheradult glioma
dc.subject.otherintracranial meningioma
dc.subject.otherbrain metastases
dc.subject.otherpediatric tumors
dc.titleA comparison study of U-Net based methods for brain tumor segmentation
dc.typeMaster thesis
dc.subject.lemacImatgeria mèdica
dc.subject.lemacAprenentatge automàtic
dc.subject.lemacAprenentatge profund
dc.subject.lemacImatges--Segmentació
dc.identifier.slug178931
dc.rights.accessOpen Access
dc.date.updated2023-11-15T05:00:23Z
dc.audience.educationlevelMàster
dc.audience.mediatorFacultat d'Informàtica de Barcelona
dc.audience.degreeMÀSTER UNIVERSITARI EN INTEL·LIGÈNCIA ARTIFICIAL (Pla 2017)
dc.contributor.covenanteeUniversitat de Barcelona


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record