Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
69.132 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial
  • Ponències/Comunicacions de congressos
  • View Item
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial
  • Ponències/Comunicacions de congressos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A new force profile signal for a convex solution of muscle force estimation from electromyographic signals

Thumbnail
View/Open
Article (333,2Kb)
 
10.1109/EMBC40787.2023.10340594
 
  View UPCommons Usage Statistics
  LA Referencia / Recolecta stats
Includes usage data since 2022
Cita com:
hdl:2117/407639

Show full item record
Shirzadi, MehdiMés informació
Mirshamsi, Arezoo
Esrefoglu, Alp
Rojas Martínez, Mónica MarleneMés informacióMés informacióMés informació
Marateb, Hamid RezaMés informacióMés informació
Mañanas Villanueva, Miguel ÁngelMés informacióMés informacióMés informació
Vieira, Taian Martins
Document typeConference report
Defense date2023
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
ProjectMYOARM: TECNOLOGIA INTELIGENTE PARA LA REHABILITACION MOTORA (AEI-PDC2021-120818-I00)
Abstract
High-Density Surface Electromyography (HD-sEMG) is a non-invasive technique for measuring the electrical activity of a muscle with multiple, closely spaced electrodes. Estimation of muscle force is one of the applications of HD-sEMG. Usually, validating different EMG-Force models entails simple movements limited to laboratory settings. The validity of these models in more ecological conditions, requesting force production over a wide frequency band, remains unknown. In this study, we, therefore, compare the results of force prediction using four different types of input force profiles that can be representative of daily life activities, and we investigate whether the crest factor of these different input signals affects force prediction. For predicting the force from sEMG signals, we used our real-time and convex methods. HD-sEMG signals were recorded with 144 channels from the biceps brachii, brachioradialis, and triceps (long, lateral, and medial head) muscles of 24 healthy subjects during random signal, random phase, Schroeder phase, and minimum crest factor (crestmin) signal. The correlation and coefficient of determination (R 2 ) between measured and predicted forces were calculated for the different force feedback profiles. The crestmin signal showed significantly better results based on statistical tests (P-value < 0.05), with correlation and R 2 equal to 0.92±0.03 and 0.86±0.05, respectively. The results demonstrate that the crest factor of input signals is a crucial parameter that can impact the performance of EMG-Force models and must be considered during training.Clinical Relevance— This study demonstrates that lower crest factor multisine force profiles result in improved fitness for force prediction and can be used as an alternative to random signals.
CitationShirzadi, M. [et al.]. A new force profile signal for a convex solution of muscle force estimation from electromyographic signals. A: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. "2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Conference (EMBC): proceedings: Sydney, Australia, 24-27 July 2023". 2023, ISBN 979-8-3503-2447-1. DOI 10.1109/EMBC40787.2023.10340594. 
URIhttp://hdl.handle.net/2117/407639
DOI10.1109/EMBC40787.2023.10340594
ISBN979-8-3503-2447-1
Publisher versionhttps://ieeexplore.ieee.org/document/10340594
Other identifiershttps://pubmed.ncbi.nlm.nih.gov/38082591/
Collections
  • Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial - Ponències/Comunicacions de congressos [1.571]
  • BIOART - BIOsignal Analysis for Rehabilitation and Therapy - Ponències/Comunicacions de congressos [19]
  View UPCommons Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
full-paper_607.pdfArticle333,2KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Metadata under:Metadata under CC0
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina