Show simple item record

dc.contributor.authorAbanco Martínez de Arenzana, Claudia
dc.contributor.authorAsurza Véliz, Flavio Alexander
dc.contributor.authorMedina Iglesias, Vicente César de
dc.contributor.authorHurlimann Ziegler, Marcel
dc.contributor.authorBennett, Georgina L.
dc.contributor.otherUniversitat Politècnica de Catalunya. Doctorat en Enginyeria Civil
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Màquines i Motors Tèrmics
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental
dc.date.accessioned2024-04-26T18:44:36Z
dc.date.available2024-04-26T18:44:36Z
dc.date.issued2024-07
dc.identifier.citationAbancó, C. [et al.]. Modelling antecedent soil hydrological conditions to improve the prediction of landslide susceptibility in typhoon-prone regions. "Landslides (Berlin)", Juliol 2024, vol. 21, núm. 7, p. 1531-1547.
dc.identifier.issn1612-510X
dc.identifier.urihttp://hdl.handle.net/2117/407211
dc.description.abstractMost regional landslide susceptibility models do not consider the evolving soil hydrological conditions leading up to a multiple occurrence regional landslide event. This results in inaccurate predictions due to the non-linear behaviour of the terrain. To address this, we have developed a simple and efficient model that incorporates the mid-term evolution of soil hydrological conditions. The model combines a water balance model and a geotechnical model based on infinite slope theory. The analysis of 561 high-intensity rainfall events in a typhoon-prone region of the Philippines revealed that the percolation of water during the 5-month wet season is crucial in determining landslide susceptibility. Consequently, high-intensity rainfall events at the start of the wet season are less likely to trigger landslides, while later events are more hazardous. We analysed the change in landslide susceptibility during the 2018 rainy season by comparing the probability of failure (PoF) before and after three high-intensity rainfall events (July, August and September). Only the event in September caused a significant increase in the probability of failure (PoF). The model showed an accuracy of 0.63, with stable cells better represented than unstable cells. The antecedent hydrological conditions on the lower soil layers are responsible for changes in landslide susceptibility. Our findings support the hypothesis that new approaches to developing hydro-meteorological thresholds for landslide early warning systems should be evaluated, especially in regions with strong seasonality.
dc.language.isoeng
dc.publisherSpringer
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectÀrees temàtiques de la UPC::Enginyeria civil::Geologia::Riscos geològics
dc.subject.lcshLandslides
dc.subject.otherLandslides
dc.subject.otherRainfall
dc.subject.otherSoil moisture
dc.subject.otherSusceptibility
dc.subject.otherTyphoon
dc.titleModelling antecedent soil hydrological conditions to improve the prediction of landslide susceptibility in typhoon-prone regions
dc.typeArticle
dc.subject.lemacEsllavissades
dc.contributor.groupUniversitat Politècnica de Catalunya. CREMIT - Centre de Recerca de Motors i Instal·lacions Tèrmiques
dc.contributor.groupUniversitat Politècnica de Catalunya. Geo2Aqua - Monitoring, modelling and geomatics for hydro-geomorphological processes
dc.identifier.doi10.1007/s10346-024-02242-8
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://link.springer.com/article/10.1007/s10346-024-02242-8
dc.rights.accessOpen Access
local.identifier.drac38820321
dc.description.versionPostprint (published version)
local.citation.authorAbancó, C.; Asurza, F.; De Medina, V.; Hürlimann, M.; Bennett, G.
local.citation.publicationNameLandslides (Berlin)
local.citation.volume21
local.citation.number7
local.citation.startingPage1531
local.citation.endingPage1547


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record