Show simple item record

dc.contributorSánchez Espigares, Josep Anton
dc.contributor.authorCasas Zamorano, Gerard
dc.date.accessioned2024-04-24T11:07:12Z
dc.date.available2024-04-24T11:07:12Z
dc.date.issued2023
dc.identifier.urihttp://hdl.handle.net/2117/407032
dc.description.abstractFraud is a worrying activity that affects several factors as a whole. With the objective of addressing this issue adequately, it is necessary to build methods that detect and prevent this type of activity. In this project, we propose a text analysis tool for the detection of fraudulent behavior and two models for its prediction, and where we have made use of Zurich Insurance PLC data of 2020 and 2021 to conduct this study. The results that have been obtained demonstrate that there is a lot of variability in the data, where the prediction of fraud through the models has obtained an accuracy of around 63%. Nevertheless, the study that has been carried out has allowed us to extract some relevant conclusions, together with some considerations for future research.
dc.language.isoeng
dc.publisherUniversitat Politècnica de Catalunya
dc.publisherUniversitat de Barcelona
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Estadística matemàtica
dc.subject.lcshMachine learning
dc.subject.lcshFraud
dc.subject.lcshLinear models (Statistics)
dc.titleClassification model applied to fraud detection within the insurance sector
dc.typeBachelor thesis
dc.subject.lemacAprenentatge automàtic
dc.subject.lemacFrau
dc.subject.lemacModels lineals (Estadística)
dc.subject.amsClassificació AMS::62 Statistics
dc.rights.accessOpen Access
dc.audience.educationlevelGrau
dc.audience.mediatorUniversitat Politècnica de Catalunya. Facultat de Matemàtiques i Estadística
dc.audience.degreeGRAU EN ESTADÍSTICA (Pla 2009)


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record