Show simple item record

dc.contributor.authorTorres Gil, Santiago
dc.contributor.authorCruz Gamba, Patricia
dc.contributor.authorMurillo Ojeda, Raquel
dc.contributor.authorJiménez Esteban, F. M.
dc.contributor.authorRebassa Mansergas, Alberto
dc.contributor.authorSolano Márquez, Enrique
dc.contributor.authorCamisassa, María Eugenia
dc.contributor.authorRaddi, Roberto
dc.contributor.authorDoliguez Le Lourec, J.
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Física
dc.date.accessioned2024-04-15T10:20:06Z
dc.date.available2024-04-15T10:20:06Z
dc.date.issued2023-09-21
dc.identifier.citationTorres, S. [et al.]. White dwarf spectral type-temperature distribution from Gaia DR3 and the Virtual Observatory. "Astronomy & astrophysics", 21 Setembre 2023, vol. 677, núm. Article 159, p. 1-7.
dc.identifier.issn1432-0746
dc.identifier.otherhttps://arxiv.org/abs/2307.13629
dc.identifier.urihttp://hdl.handle.net/2117/406493
dc.description.abstractContext. The characterization of white dwarf atmospheres is crucial for accurately deriving stellar parameters such as effective temperature, mass, and age. However, the inclusion of physical processes such as convective mixing and convective dilution in current white dwarf atmospheric models offers a prediction of the spectral evolution of these objects. To constrain these models, accurate observational data and analyses are necessary. Aims. We aim to classify the population of white dwarfs up to 500 pc into hydrogen-rich or hydrogen-deficient atmospheres based on Gaia spectra and to derive an accurate spectral type-temperature distribution, namely, the ratio between the number of non-DAs to the total number of white dwarfs as a function of the effective temperature for the largest observed unbiased sample of these objects. Methods. We took advantage of the recent Gaia low-resolution spectra available for 76 657 white dwarfs up to 500 pc. We calculated the synthetic J-PAS narrow-band photometry and fit the spectral energy distribution of each object with up-to-date models for hydrogen-rich and helium-rich white dwarf atmospheres. We estimated the probability for a white dwarf to have a hydrogen-rich atmosphere and validated the results using the Montreal White Dwarf Database. Finally, precise effective temperature values were derived for each object using La Plata evolutionary models. Results. We successfully classified a total of 65 310 white dwarfs (57 155 newly classified objects) into DAs and non-DAs with an accuracy of 94%. An unbiased subsample of nearly 34 000 objects was built, from which we computed a precise spectral distribution spanning an effective temperature range from 5500 to 40 000 K, while accounting for potential selection effects. Conclusions. Some characteristic features of the spectral evolution, such as the deficit of helium-rich stars at Teff ˜ 35 000 - 40 000 K and in the range of 22 000 ¿ Teff ¿ 25 000 K, as well as a gradual increase from 18 000 K to Teff ˜ 7000 K, where the non-DA stars percentage reaches its maximum of 41%, followed by a decrease for cooler temperatures, are statistically significant. These findings will provide precise constraints for the proposed models of spectral evolution.
dc.description.sponsorshipWe acknowledge support from MINECO under the PID2020-117252GB-I00 grant and by the AGAUR/Generalitat de Catalunya grant SGR-386/2021. P.C. acknowledges financial support from the Govern- ment of Comunidad Autónoma de Madrid (Spain) via postdoctoral grant ‘Atrac- ción de Talento Investigador’ 2019-T2/TIC-14760. R.M.O. is funded by INTA through grant PRE-OBSERVATORIO. MC acknowledges grant RYC2021- 032721-I, funded by MCIN/AEI/10.13039/501100011033 and by the Euro- pean Union NextGenerationEU/PRTR. RR acknowledges support from Grant RYC2021-030837-I funded by MCIN/AEI/ 10.13039/501100011033 and by “European Union NextGenerationEU/PRTR”. F.J.E. acknowledges support from ESA through the Faculty of the European Space Astronomy Centre (ESAC) – Funding reference 4000139151/22/ES/CM. This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www. cosmos.esa.int/gaia), processed by the Gaia Data Processing and Anal- ysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/ consortium). Funding for the DPAC has been provided by national insti- tutions, in particular the institutions participating in the Gaia Multilateral Agreement. This work has made use of the Python package GaiaXPy, devel- oped and maintained by members of the Gaia Data Processing and Analy- sis Consortium (DPAC) and in particular, Coordination Unit 5 (CU5), and the Data Processing Centre located at the Institute of Astronomy, Cambridge, UK (DPCI). This publication makes use of VOSA, developed under the Spanish Virtual Observatory (https://svo.cab.inta-csic.es) project funded by MCIN/AEI/10.13039/501100011033/ through grant PID2020-112949GB-I00. We extensively made used of Topcat (Taylor 2005). This research has made use of the VizieR catalogue access tool, CDS, Strasbourg, France. We acknowledge use of the ADS bibliographic services.
dc.format.extent7 p.
dc.language.isoeng
dc.publisherEDP Sciences
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectÀrees temàtiques de la UPC::Física::Astronomia i astrofísica
dc.subject.lcshWhite dwarf stars
dc.subject.otherWhite dwarfs
dc.subject.otherStars: Atmospheres
dc.subject.otherVirtual observatory tools
dc.subject.otherCatalogs
dc.titleWhite dwarf spectral type-temperature distribution from Gaia DR3 and the Virtual Observatory
dc.typeArticle
dc.subject.lemacEstels nans
dc.contributor.groupUniversitat Politècnica de Catalunya. GAA - Grup d'Astronomia i Astrofísica
dc.identifier.doi10.1051/0004-6361/202346977
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://www.aanda.org/articles/aa/full_html/2023/09/aa46977-23/aa46977-23.html
dc.rights.accessOpen Access
local.identifier.drac37182829
dc.description.versionPostprint (published version)
dc.relation.projectidinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-117252GB-I00/ES/ENANAS BLANCAS, ESTRELLAS DE NEUTRONES Y AGUJEROS NEGROS - FISICA DE LAS ESTRELLAS COMPACTAS/
dc.relation.projectidinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-112949GB-I00/ES/EL OBSERVATORIO VIRTUAL ESPAÑOL. EXPLOTACION CIENTIFICO-TECNICA DE ARCHIVOS ASTRONOMICOS/
local.citation.authorTorres, S.; Cruz, P.; Murillo, R.; Jiménez, F.; Rebassa, A.; Solano, E.; Camisassa, M.; Raddi, R.; Doliguez, J.
local.citation.publicationNameAstronomy & astrophysics
local.citation.volume677
local.citation.numberArticle 159
local.citation.startingPage1
local.citation.endingPage7


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record