Show simple item record

dc.contributor.authorGonzález Blanco, Laura
dc.contributor.authorRomero Morales, Enrique Edgar
dc.contributor.authorPinyol Puigmartí, Núria Mercè
dc.contributor.authorAlonso Pérez de Agreda, Eduardo
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Física
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental
dc.date.accessioned2024-04-15T09:54:35Z
dc.date.available2024-04-15T09:54:35Z
dc.date.issued2023
dc.identifier.citationGonzalez, L. [et al.]. Microstructure of compacted low-plasticity soils: the initial fabric and its evolution on stress and suction paths. "E3S Web of Conferences", 2023, vol. 382, núm. 11003, p. 1-6.
dc.identifier.issn2267-1242
dc.identifier.urihttp://hdl.handle.net/2117/406491
dc.description.abstractSoils used in earthworks undergo different hydro-mechanical paths due to the compaction and construction process, the change in climatic conditions or the groundwater level oscillations. Their hydro- mechanical behaviour is greatly affected by their initial microstructure set on compaction that evolves differently in compliance with the stress paths. The current study investigates the differences in the initial microstructure in a low-plasticity clayey silt compacted at the dry and wet of the optimum. The microstructure was characterized by mercury intrusion porosimetry. The definition of a microstructural void ratio (¿¿¿¿) inside the soil aggregates and its ratio to the total void ratio (¿¿¿¿/¿¿) allowed plotting contours of equal ¿¿¿¿ and ¿¿¿¿/¿¿ in the Proctor compaction plane for the as-compacted states. Additionally, the evolution of the initial microstructure along different stress and suction paths was evaluated. The microstructural void ratio reached after the hydro-mechanical paths did not reproduce the contours of the as-compacted states in the compaction plane. In fact, the microstructural void ratio inside saturated soil aggregates follows Terzaghi’s effective stress through a microstructural compressibility parameter, which provides a straightforward approach for predicting the evolution of the microstructure of compacted low-plasticity soils subjected to different stress-suction paths.
dc.format.extent6 p.
dc.language.isoeng
dc.publisherEDP Sciences
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectÀrees temàtiques de la UPC::Enginyeria civil::Geologia
dc.subject.lcshSoil mechanics
dc.subject.lcshPlasticity
dc.subject.lcshClay soils
dc.titleMicrostructure of compacted low-plasticity soils: the initial fabric and its evolution on stress and suction paths
dc.typeArticle
dc.subject.lemacMecànica dels sòls
dc.subject.lemacSòls--Compactació
dc.subject.lemacArgila
dc.contributor.groupUniversitat Politècnica de Catalunya. GGMM - Grup de Geotècnia i Mecànica de Materials
dc.identifier.doi10.1051/e3sconf/202338211003
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://www.mysciencework.com/publication/show/microstructure-compacted-lowplasticity-soils-initial-fabric-its-evolution-stress-suction-paths-57cb47aa
dc.rights.accessOpen Access
local.identifier.drac37982345
dc.description.versionPostprint (published version)
local.citation.authorGonzalez, L.; Romero, E.; Pinyol, N.; Alonso, E.
local.citation.publicationNameE3S Web of Conferences
local.citation.volume382
local.citation.number11003
local.citation.startingPage1
local.citation.endingPage6


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record