A sensor data-based approach for the definition of condition taxonomies for a hydraulic pump †

Visualitza/Obre
Cita com:
hdl:2117/406354
Tipus de documentArticle
Data publicació2020-11
EditorMultidisciplinary Digital Publishing Institute (MDPI)
Condicions d'accésAccés obert
Aquesta obra està protegida pels drets de propietat intel·lectual i industrial corresponents.
Llevat que s'hi indiqui el contrari, els seus continguts estan subjectes a la llicència de Creative Commons
:
Reconeixement 4.0 Internacional
Abstract
Condition monitoring (CM) is an important application in industry for detecting machine failures in an incipient stage. Based on sensor data, computational intelligence methods provide efficient solutions for the analysis of high dimensional process data with the ability to detect and predict complex condition states. IOT gateways are affordable devices with the ability to implement data ingestion and data analytics tasks on an edge device providing the possibility to implement condition monitoring in real-time on the device. In this work, we present an experimental bench for the sensorization of a hydraulic installation based on IoT gateways in order to detect several blocking states in a hydraulic pump and to avoid the cavitation problem. The experiments of 15 different blocking conditions yield a novel dataset with process sensor information for the described problem. The dataset is analyzed from a data quality point of view to find a meaningful categorization of fault conditions, which are feasible concerning implementation in a condition monitoring system. We use an exploratory data analysis approach, which is based on principal component analysis, provides data visualization of the different blocking conditions of the experiment, and allows us to decide on a proper fault categorization by detecting clearly separated data groups
CitacióGil, C.; König, C. A sensor data-based approach for the definition of condition taxonomies for a hydraulic pump †. "Engineering proceedings (Basel)", Novembre 2020, vol. 2, núm. 1, article 82.
ISSN2673-4591
Versió de l'editorhttps://www.mdpi.com/2673-4591/2/1/82
Col·leccions
Fitxers | Descripció | Mida | Format | Visualitza |
---|---|---|---|---|
engproc-02-00082-v2.pdf | 2,119Mb | Visualitza/Obre |