Show simple item record

dc.contributor.authorNúñez Rodríguez, José Fernando
dc.contributor.authorArjona Martínez, Jamie
dc.contributor.authorTormos Llorente, Adrián
dc.contributor.authorGarcia Gasulla, Dario
dc.contributor.authorBéjar Alonso, Javier
dc.contributor.otherUniversitat Politècnica de Catalunya. Doctorat en Intel·ligència Artificial
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Ciències de la Computació
dc.contributor.otherBarcelona Supercomputing Center
dc.date.accessioned2024-03-20T06:46:04Z
dc.date.available2024-03-20T06:46:04Z
dc.date.issued2023-11-01
dc.identifier.citationNuñez, J. [et al.]. Applying generative models and transfer learning to physiological data classification. A: "Artificial Intelligence research and development : Proceedings of the 25th International Conference of the Catalan Association for Artificial Intelligence". Amsterdam: IOS Press, 2023, p. 28-37. ISBN 978-1-64368-449-9. DOI 10.3233/FAIA230656.
dc.identifier.isbn978-1-64368-449-9
dc.identifier.urihttp://hdl.handle.net/2117/404985
dc.description.abstractThe scarcity and imbalance of datasets for training deep learning models in a specific task is a common problem. This is especially true in the physiological domain where many applications use complex data collection processes and protocols, and it is difficult to gather a significant number of subjects. In this paper, we evaluate generative deep learning algorithms by training them to create data based on open physiological datasets and conduct a study on their potential for transfer learning. We measure the performance change of classifiers when the training data is augmented with the synthetic samples and also perform experiments in which we fine-tune classification models trained with the generated data adding increasing amounts of the real data to investigate the transfer learning capabilities of synthetic datasets. Finally, we advise and provide the best option for researchers interested in augmenting ECG datasets using these algorithms and the best fine-tuning strategies that would generalize correctly when tested on new data from the same domain but for a different classification task.
dc.description.sponsorshipThis research has been financed by the Artificial Intelligence for Healthy Aging (AI4HA, MIA.2021.M02.0007) project from the Programa Misiones de I+D en Inteligencia Artificial 2021.
dc.format.extent10 p.
dc.language.isoeng
dc.publisherIOS Press
dc.rightsAttribution-NonCommercial 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subjectÀrees temàtiques de la UPC::Informàtica::Intel·ligència artificial
dc.subject.lcshTransfer learning (Machine learning)
dc.subject.otherSynthetic data
dc.subject.otherTransfer learning
dc.subject.otherTime series
dc.subject.otherPhysiological signals
dc.subject.otherECG
dc.titleApplying generative models and transfer learning to physiological data classification
dc.typeConference report
dc.subject.lemacAprenentatge profund
dc.contributor.groupUniversitat Politècnica de Catalunya. IMP - Information Modeling and Processing
dc.contributor.groupUniversitat Politècnica de Catalunya. IDEAI-UPC - Intelligent Data sciEnce and Artificial Intelligence Research Group
dc.identifier.doi10.3233/FAIA230656
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://ebooks.iospress.nl/volume/artificial-intelligence-research-and-development-proceedings-of-the-25th-international-conference-of-the-catalan-association-for-artificial-intelligence
dc.rights.accessOpen Access
local.identifier.drac38461284
dc.description.versionPostprint (published version)
dc.relation.projectidinfo:eu-repo/grantAgreement/MINECO//MIA.2021.M02.0007
local.citation.authorNuñez, J.; Arjona, J.; Tormos, A.; Garcia-Gasulla, D.; Bejar, J.
local.citation.pubplaceAmsterdam
local.citation.publicationNameArtificial Intelligence research and development : Proceedings of the 25th International Conference of the Catalan Association for Artificial Intelligence
local.citation.startingPage28
local.citation.endingPage37


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record