dc.contributor.author | Acosta Humánez, Primitivo Belen |
dc.contributor.author | Lázaro Ochoa, José Tomás |
dc.contributor.author | Pantazi, Chara |
dc.contributor.author | Morales Ruiz, Juan José |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament de Matemàtiques |
dc.date.accessioned | 2024-03-18T15:44:03Z |
dc.date.available | 2024-03-18T15:44:03Z |
dc.date.issued | 2024-01-01 |
dc.identifier.citation | Acosta-Humanez, P. [et al.]. Semiclassical quantification of some two degree of freedom potentials: A differential Galois approach. "Journal of mathematical physics", 1 Gener 2024, vol. 65, núm. 1, article 012106. |
dc.identifier.issn | 0022-2488 |
dc.identifier.uri | http://hdl.handle.net/2117/404876 |
dc.description.abstract | In this work we explain the relevance of the Differential Galois Theory in the semiclassical (or WKB) quantification of some two degree of freedom potentials. The key point is that the semiclassical path integral quantification around a particular solution depends on the variational equation around that solution: a very well-known object in dynamical systems and variational calculus. Then, as the variational equation is a linear ordinary differential system, it is possible to apply the Differential Galois Theory to study its solvability in closed form. We obtain closed form solutions for the semiclassical quantum fluctuations around constant velocity solutions for some systems like the classical Hermite/Verhulst, Bessel, Legendre, and Lamé potentials. We remark that some of the systems studied are not integrable, in the Liouville–Arnold sense. |
dc.language.iso | eng |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.subject | Àrees temàtiques de la UPC::Matemàtiques i estadística |
dc.subject.lcsh | Hamiltonian systems |
dc.subject.other | Hamiltonian mechanics |
dc.subject.other | Harmonic oscillator |
dc.subject.other | Functional analysis |
dc.subject.other | Semiclassical methods |
dc.subject.other | Liouvillian functions |
dc.subject.other | Calculus of variations |
dc.subject.other | Differential algebra |
dc.subject.other | Interatomic potentials |
dc.subject.other | Propagator |
dc.subject.other | Quantum fluctuations |
dc.title | Semiclassical quantification of some two degree of freedom potentials: A differential Galois approach |
dc.type | Article |
dc.subject.lemac | Sistemes hamiltonians |
dc.contributor.group | Universitat Politècnica de Catalunya. UPCDS - Grup de Sistemes Dinàmics de la UPC |
dc.identifier.doi | 10.1063/5.0169069 |
dc.description.peerreviewed | Peer Reviewed |
dc.relation.publisherversion | https://pubs.aip.org/aip/jmp/article-abstract/65/1/012106/3061810/Semiclassical-quantification-of-some-two-degree-of?redirectedFrom=fulltext |
dc.rights.access | Open Access |
local.identifier.drac | 37907769 |
dc.description.version | Postprint (author's final draft) |
local.citation.author | Acosta-Humanez, P.; Lazaro, J. Tomás; Pantazi, C.; Morales, J. |
local.citation.publicationName | Journal of mathematical physics |
local.citation.volume | 65 |
local.citation.number | 1, article 012106 |