Show simple item record

dc.contributor.authorCsirmaz, Laszlo
dc.contributor.authorMatús, Frantisek
dc.contributor.authorPadró Laimon, Carles
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtiques
dc.date.accessioned2024-03-15T10:58:20Z
dc.date.available2024-03-15T10:58:20Z
dc.date.issued2024-05-01
dc.identifier.citationCsirmaz, L.; Matús, F.; Padro, C. Bipartite secret sharing and staircases. "Discrete mathematics", 1 Maig 2024, vol. 347, núm. article 113909.
dc.identifier.issn1872-681X
dc.identifier.otherhttps://arxiv.org/abs/2103.04904
dc.identifier.urihttp://hdl.handle.net/2117/404705
dc.description© 2024 Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.description.abstractBipartite secret sharing schemes have a bipartite access structure in which the set of participants is divided into two parts and all participants in the same part play an equivalent role. Such a bipartite scheme can be described by a staircase: the collection of its minimal points. The complexity of a scheme is the maximal share size relative to the secret size; and the ¿-complexity of an access structure is the best lower bound provided by the entropy method. An access structure is ¿-ideal if it has ¿-complexity 1. Motivated by the abundance of open problems in this area, the main results can be summarized as follows. First, a new characterization of ¿-ideal multipartite access structures is given which offers a straightforward and simple approach to describe ideal bipartite and tripartite access structures. Second, the ¿-complexity is determined for a range of bipartite access structures, including those determined by two points, staircases with equal widths and heights, and staircases with all heights 1. Third, matching linear schemes are presented for some non-ideal cases, including staircases where all heights are 1 and all widths are equal. Finally, finding the Shannon complexity of a bipartite access structure can be considered as a discrete submodular optimization problem. An interesting and intriguing continuous version is defined which might give further insight to the large-scale behavior of these optimization problems.
dc.description.sponsorshipThe work of the first author was partially supported by the ERC Advanced Grant ERMiD. The work of third author was supported by the Spanish Government (MICINN) under Project PID2019-109379RB-I00.
dc.language.isoeng
dc.publisherElsevier
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights©2024. Elsevier
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Àlgebra::Teoria de nombres
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Investigació operativa::Optimització
dc.subject.lcshNumber theory
dc.subject.lcshSystem theory
dc.subject.otherCryptography
dc.subject.otherMultipartite secret sharing
dc.subject.otherEntropy method
dc.subject.otherLinear secret sharing
dc.subject.otherSubmodular optimization
dc.titleBipartite secret sharing and staircases
dc.typeArticle
dc.subject.lemacNombres, Teoria dels
dc.subject.lemacSistemes de control
dc.contributor.groupUniversitat Politècnica de Catalunya. ISG-MAK - Information Security Group - Mathematics Applied to Cryptography
dc.identifier.doi10.1016/j.disc.2024.113909
dc.description.peerreviewedPeer Reviewed
dc.subject.amsClassificació AMS::11 Number theory::11T Finite fields and commutative rings (number-theoretic aspects)
dc.subject.amsClassificació AMS::93 Systems Theory; Control::93C Control systems, guided systems
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/abs/pii/S0012365X24000402
dc.rights.accessOpen Access
local.identifier.drac37970898
dc.description.versionPostprint (author's final draft)
dc.relation.projectidinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-109379RB-I00/ES/CRIPTOGRAFIA PARA RETOS DIGITALES EMERGENTES: ESCENARIOS MULTI-USUARIO Y SEGURIDAD POST-CUANTICA/
local.citation.authorCsirmaz, L.; Matús, F.; Padro, C.
local.citation.publicationNameDiscrete mathematics
local.citation.volume347
local.citation.numberarticle 113909


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record