Artificial neural network based correction for reduced order models in computational fluid mechanics
View/Open
37770760.pdf (4,981Mb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/404146
Document typeArticle
Defense date2023-10
PublisherElsevier
Rights accessRestricted access - publisher's policy
(embargoed until 2025-07-24)
This work is protected by the corresponding intellectual and industrial property rights.
Except where otherwise noted, its contents are licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 4.0 International
Abstract
In this paper we propose a reduced order model (ROM) for incompressible flows based on proper orthogonal decomposition (POD) and having a finite element approximation as full order model (FOM). The main idea is to start from a purely POD-based ROM, projecting the equations onto the ROM space, and then add a nonlinear correction that depends on the ROM unknowns to enhance the final ROM model. This correction is based on the fact that we do have some available high fidelity data, namely, the snapshots. Thus, the correcting term is built as an artificial neural network (ANN) constructed with the snapshots as the training set. This correction is then introduced in the fully discrete ROM system to achieve more accurate solutions. A further feature of our approach is that we construct both the ROM and the FOM using the variational multi-scale (VMS) concept, and this allows us to understand the correction term as an approximation to the scales that are lost when passing from the FOM to the ROM. The resulting corrected ROM has a significant higher accuracy than the original one.
CitationDar, Z.; Baiges, J.; Codina, R. Artificial neural network based correction for reduced order models in computational fluid mechanics. "Computer methods in applied mechanics and engineering", Octubre 2023, vol. 415, núm. article 116232.
ISSN1879-2138
Collections
- ANiComp - Anàlisi numèrica i computació científica - Articles de revista [123]
- Departament d'Enginyeria Civil i Ambiental - Articles de revista [3.369]
- Doctorat en Enginyeria Civil - Articles de revista [199]
- CIMNE - Centre Internacional de Mètodes Numèrics en Enginyeria - Articles de revista [1.048]
Files | Description | Size | Format | View |
---|---|---|---|---|
37770760.pdf![]() | 4,981Mb | Restricted access |