Show simple item record

dc.contributor.authorZeng, Hao
dc.contributor.authorGonzález Blanco, Laura
dc.contributor.authorRomero Morales, Enrique Edgar
dc.contributor.authorFraccica, Alessandro
dc.contributor.otherUniversitat Politècnica de Catalunya. Doctorat en Enginyeria del Terreny
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Física
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental
dc.contributor.otherCentre Internacional de Mètodes Numèrics en Enginyeria
dc.date.accessioned2024-03-05T13:33:17Z
dc.date.available2024-03-05T13:33:17Z
dc.date.issued2023-12
dc.identifier.citationZeng, H. [et al.]. The importance of the microstructure on hydro-mechanical behaviour of compacted granular bentonite. "Applied clay science", Desembre 2023, vol. 246, núm. article 107177.
dc.identifier.issn0169-1317
dc.identifier.urihttp://hdl.handle.net/2117/403733
dc.description.abstractGranular bentonite (GB) with extended grain size distribution, a candidate material to construct engineered barriers, has low water permeability, high swelling potential and self-sealing capacity and is desirable in portability and workability. However, few systematic data combining microstructural descriptions and hydro-mechanical (HM) behavioural features are available. The present work investigates the HM performance of Wyoming (MX80)-type GB samples compacted at different initial water contents and at a fixed dry density of 1550 kg/m3. The samples' microstructure and its evolution along stress paths were studied using X-ray micro-computed tomography and mercury intrusion porosimetry. The results highlighted that the compacted GB presented local density heterogeneity and a multi-porosity network. Compaction at low initial water content increased the proportion of macropores and contributed to the enhancement of the compressibility and collapse on wetting under high stresses. During isochoric saturation, two stages of swelling development were identified. First, the flooding of macropores and matric suction reduction was related to the initial increase in swelling pressure. The secondary swelling was due to the water absorption of clay sheets in micropores and the expansion of micropores within granules and aggregates, during which the density of pore water increased. A decrease in the compaction water content can result in a higher pore water density after isochoric saturation and a lower water permeability. Finally, the water retention behaviour of the compacted sample within drying/wetting cycles was less sensitive to the initial pore size distribution. The current outcomes underline the critical role of the microstructure on the HM behaviour of compacted GB.
dc.description.sponsorshipThis project has received funding from the European Union's Horizon 2020 research and innovation programme ‘European Joint Programme on Radioactive Waste Management’ EURAD (2019-2024) WP GAS ‘Mechanistic understanding of gas transport in clay materials’ under grant agreement No. 847593. The authors acknowledge the support of NAGRA (National Cooperative for the Disposal of Radioactive Waste) through the project ‘Scientific work related to barrier integrity’ Ref 18722 (2019-2024). The first author has received funding from the China Scholarship Council (CSC
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectÀrees temàtiques de la UPC::Edificació::Materials de construcció
dc.subjectÀrees temàtiques de la UPC::Enginyeria civil::Materials i estructures
dc.subject.lcshBentonite
dc.subject.lcshFluid mechanics
dc.subject.otherGranular bentonite
dc.subject.otherMicrostructure
dc.subject.otherHydro-mechanical behaviour
dc.titleThe importance of the microstructure on hydro-mechanical behaviour of compacted granular bentonite
dc.typeArticle
dc.subject.lemacBentonita
dc.subject.lemacMecànica de fluids
dc.contributor.groupUniversitat Politècnica de Catalunya. GGMM - Grup de Geotècnia i Mecànica de Materials
dc.identifier.doi10.1016/j.clay.2023.107177
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0169131723003642
dc.rights.accessOpen Access
local.identifier.drac37740732
dc.description.versionPostprint (published version)
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/847593/EU/European Joint Programme on Radioactive Waste Management/EURAD
local.citation.authorZeng, H.; Gonzalez, L.; Romero, E.; Fraccica, A.
local.citation.publicationNameApplied clay science
local.citation.volume246
local.citation.numberarticle 107177


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record