UPCommons està en procés de migració del dia 10 fins al 14 Juliol. L’autentificació està deshabilitada per evitar canvis durant aquesta migració.
Lessons Learned from a Performance Analysis and Optimization of a Multiscale Cellular Simulation

Cita com:
hdl:2117/403351
Document typeConference lecture
Defense date2023
PublisherAssociation for Computing Machinery (ACM)
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
ProjectPOP2 - Performance Optimisation and Productivity 2 (EC-H2020-824080)
PerMedCoE - HPC%2FExascale Centre of Excellence in Personalised Medicine (EC-H2020-951773)
BSC - COMPUTACION DE ALTAS PRESTACIONES VIII (AEI-PID2019-107255GB-C21)
PerMedCoE - HPC%2FExascale Centre of Excellence in Personalised Medicine (EC-H2020-951773)
BSC - COMPUTACION DE ALTAS PRESTACIONES VIII (AEI-PID2019-107255GB-C21)
Abstract
This work presents a comprehensive performance analysis and optimization of a multiscale agent-based cellular simulation. The optimizations applied are guided by detailed performance analysis and include memory management, load balance, and a locality-aware parallelization. The outcome of this paper is not only the speedup of 2.4x achieved by the optimized version with respect to the original PhysiCell code, but also the lessons learned and best practices when developing parallel HPC codes to obtain efficient and highly performant applications, especially in the computational biology field.
CitationClasca, M. [et al.]. Lessons Learned from a Performance Analysis and Optimization of a Multiscale Cellular Simulation. A: Platform for Advanced Scientific Computing Conference. "PASC '23: Platform for Advanced Scientific Computing Conference: June 26 - 28, 2023, Davos Switzerland". New York: Association for Computing Machinery (ACM), 2023, ISBN 979-8-4007-0190-0. DOI 10.1145/3592979.3593403.
ISBN979-8-4007-0190-0
Publisher versionhttps://dl.acm.org/doi/proceedings/10.1145/3592979
Other identifiershttps://arxiv.org/abs/2306.11544
Files | Description | Size | Format | View |
---|---|---|---|---|
2306.11544.pdf | 1,984Mb | View/Open |
Files | Description | Size | Format | View |
---|---|---|---|---|
2306.11544.pdf | 1,984Mb | View/Open |