Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
69.063 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament d'Òptica i Optometria
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament d'Òptica i Optometria
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Applying multilayer analysis to morphological, structural, and functional brain networks to identify relevant dysfunction patterns

Thumbnail
View/Open
netn_a_00258.pdf (1,139Mb)
 
10.1162/netn_a_00258
 
  View UPCommons Usage Statistics
  LA Referencia / Recolecta stats
Includes usage data since 2022
Cita com:
hdl:2117/401765

Show full item record
Casas Roma, Jordi
Martinez-Heras, Eloy
Solé Ribalta, Albert
Solana, Elisabeth
López Soley, Elisabet
Vivó Sánchez, Francisco Javier
Diaz Hurtado, Marcos
Alba Arbalat, SalutMés informacióMés informacióMés informació
Sepúlveda, Maria
Blanco, Yolanda
Saiz Hinarejos, Albert
Borge Holthoefer, Javier
Llufriu, Sara
Prados, Ferran
Document typeArticle
Defense date2022-07-01
PublisherThe MIT Press. Massachusetts Institute of Technology
Rights accessOpen Access
Attribution 4.0 International
This work is protected by the corresponding intellectual and industrial property rights. Except where otherwise noted, its contents are licensed under a Creative Commons license : Attribution 4.0 International
Abstract
In recent years, research on network analysis applied to MRI data has advanced significantly. However, the majority of the studies are limited to single networks obtained from resting-state fMRI, diffusion MRI, or gray matter probability maps derived from T1 images. Although a limited number of previous studies have combined two of these networks, none have introduced a framework to combine morphological, structural, and functional brain connectivity networks. The aim of this study was to combine the morphological, structural, and functional information, thus defining a new multilayer network perspective. This has proved advantageous when jointly analyzing multiple types of relational data from the same objects simultaneously using graph- mining techniques. The main contribution of this research is the design, development, and validation of a framework that merges these three layers of information into one multilayer network that links and relates the integrity of white matter connections with gray matter probability maps and resting-state fMRI. To validate our framework, several metrics from graph theory are expanded and adapted to our specific domain characteristics. This proof of concept was applied to a cohort of people with multiple sclerosis, and results show that several brain regions with a synchronized connectivity deterioration could be identified.
CitationCasas, J. [et al.]. Applying multilayer analysis to morphological, structural, and functional brain networks to identify relevant dysfunction patterns. "Network neuroscience", 1 Juliol 2022, vol. 6, núm. 3, p. 916-933. 
URIhttp://hdl.handle.net/2117/401765
DOI10.1162/netn_a_00258
ISSN2472-1751
Publisher versionhttps://direct.mit.edu/netn/article/6/3/916/111665/Applying-multilayer-analysis-to-morphological
Collections
  • Departament d'Òptica i Optometria - Articles de revista [500]
  View UPCommons Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
netn_a_00258.pdf1,139MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Metadata under:Metadata under CC0
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina