Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
69.059 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Física
  • Ponències/Comunicacions de congressos
  • View Item
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Física
  • Ponències/Comunicacions de congressos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A neural network approach to predict the ionospheric scintillation Wbmod model variables

Thumbnail
View/Open
A_Neural_Network_Approach_to_Predict_the_Ionospheric_Scintillation_Wbmod_Model_Variables.pdf (792,5Kb)
 
10.1109/IGARSS52108.2023.10282900
 
  View UPCommons Usage Statistics
  LA Referencia / Recolecta stats
Includes usage data since 2022
Cita com:
hdl:2117/401746

Show full item record
Molina Ordóñez, CarlosMés informacióMés informació
Boudriki Semlali, Badr EddineMés informacióMés informació
Hyuk, ParkMés informacióMés informacióMés informació
Camps Carmona, Adriano JoséMés informacióMés informacióMés informació
Document typeConference lecture
Defense date2023
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
The ionospheric scintillation can be explained as the fluctuations in the phase and intensity of electromagnetic rays after crossing the ionosphere. Rino’s theory was proposed in 1979 to quantify this scintillation, and subsequent models appeared to predict its characteristics. One of them is the WideBand ionospheric scintillation Model (WBMOD) from 1984. This study aims to provide a neural network that emulates the behavior of WBMOD model, by learning from phase and intensity scintillation data gathered from several ESA projects. By using the Rino’s power-law phase-screen ionospheric scintillation theory, the values of the height-integrated irregularities strength (C k L) and the slope of its PSD (q) can be obtained from the physically measured S 4 and σ ϕ . So, using this data, two neural networks are presented which obtains results that fit well with the WBMOD expected values.
CitationMolina, C. [et al.]. A neural network approach to predict the ionospheric scintillation Wbmod model variables. A: IEEE International Geoscience and Remote Sensing Symposium. "IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium: 16-21 July, 2023, Pasadena, California, USA: proceedings". Institute of Electrical and Electronics Engineers (IEEE), 2023, p. 7731-7733. ISBN 979-8-3503-2010-7. DOI 10.1109/IGARSS52108.2023.10282900. 
URIhttp://hdl.handle.net/2117/401746
DOI10.1109/IGARSS52108.2023.10282900
ISBN979-8-3503-2010-7
Publisher versionhttps://ieeexplore.ieee.org/document/10282900
Collections
  • Departament de Física - Ponències/Comunicacions de congressos [722]
  • Doctorat en Teoria del Senyal i Comunicacions - Ponències/Comunicacions de congressos [293]
  • Departament de Teoria del Senyal i Comunicacions - Ponències/Comunicacions de congressos [3.457]
  View UPCommons Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
A_Neural_Networ ... _Wbmod_Model_Variables.pdf792,5KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Metadata under:Metadata under CC0
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina